These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34154153)

  • 1. Sub-wavelength continuous THz imaging system based on interferometric detection.
    García-Jomaso YA; Hernández-Roa DL; Garduño-Mejía J; Treviño-Palacios CG; Kolokoltsev OV; Qureshi N
    Opt Express; 2021 Jun; 29(12):19120-19125. PubMed ID: 34154153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Object-dependent spatial resolution of the reflection-mode terahertz solid immersion microscopy.
    Zhelnov VA; Zaytsev KI; Kucheryavenko AS; Katyba GM; Dolganova IN; Ponomarev DS; Kurlov VN; Skorobogatiy M; Chernomyrdin NV
    Opt Express; 2021 Feb; 29(3):3553-3566. PubMed ID: 33770952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array.
    Ruan D; Li Z; Du L; Zhou X; Zhu L; Lin C; Yang M; Chen G; Yuan W; Liang G; Wen Z
    Appl Opt; 2018 Sep; 57(27):7905-7909. PubMed ID: 30462058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on Practical Issues in Solid Immersion Lens Based Sub-Wavelength Terahertz Imaging Technique: System Stability Verification and Interference Pattern Removal.
    Choi DH; Shin JH; Lee IM; Park KH
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and spectral beam characteristics in a terahertz broadband sub-wavelength imaging system using a solid immersion lens.
    Choi DH
    Appl Opt; 2024 May; 63(13):3619-3624. PubMed ID: 38856547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution.
    Li Z; Yan Q; Qin Y; Kong W; Li G; Zou M; Wang D; You Z; Zhou X
    Opt Express; 2019 Jan; 27(2):702-713. PubMed ID: 30696152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging.
    Mitrofanov O; Viti L; Dardanis E; Giordano MC; Ercolani D; Politano A; Sorba L; Vitiello MS
    Sci Rep; 2017 Mar; 7():44240. PubMed ID: 28287123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air.
    Zhao J; Chu W; Guo L; Wang Z; Yang J; Liu W; Cheng Y; Xu Z
    Sci Rep; 2014 Jan; 4():3880. PubMed ID: 24457525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chocolate inspection by means of phase-contrast imaging using multiple-plane terahertz phase retrieval.
    Agour M; Falldorf C; Taleb F; Koch M; Bergmann RB; Castro-Camus E
    Opt Lett; 2022 Jul; 47(13):3283-3286. PubMed ID: 35776606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 600-GHz Fourier imaging based on heterodyne detection at the 2nd sub-harmonic.
    Yuan H; Lisauskas A; Thomson MD; Roskos HG
    Opt Express; 2023 Nov; 31(24):40856-40870. PubMed ID: 38041376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding.
    Zhao J; E Y; Williams K; Zhang XC; Boyd RW
    Light Sci Appl; 2019; 8():55. PubMed ID: 31231521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth.
    Göbel T; Stanze D; Globisch B; Dietz RJ; Roehle H; Schell M
    Opt Lett; 2013 Oct; 38(20):4197-9. PubMed ID: 24321958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution imaging enabled by 100-kW-peak-power parametric source at 5.7 THz.
    Kuo CH; Wu MH; Chen CR; Lin YJ; Laurell F; Huang YC
    Sci Rep; 2023 Apr; 13(1):5843. PubMed ID: 37037875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system.
    Su K; Liu Z; Barat RB; Gary DE; Michalopoulou ZH; Federici JF
    Appl Opt; 2010 Jul; 49(19):E13-9. PubMed ID: 20648115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-wave terahertz in-line digital holography.
    Xue K; Li Q; Li YD; Wang Q
    Opt Lett; 2012 Aug; 37(15):3228-30. PubMed ID: 22859141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction.
    Li Z; Li L; Qin Y; Li G; Wang D; Zhou X
    Opt Express; 2016 Sep; 24(18):21134-46. PubMed ID: 27607716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely tunable continuous-wave terahertz source with interferometric frequency control.
    Deninger AJ; Göbel T; Schönherr D; Kinder T; Roggenbuck A; Köberle M; Lison F; Müller-Wirts T; Meissner P
    Rev Sci Instrum; 2008 Apr; 79(4):044702. PubMed ID: 18447539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-aperture aspherical lens for high-resolution terahertz imaging.
    Chernomyrdin NV; Frolov ME; Lebedev SP; Reshetov IV; Spektor IE; Tolstoguzov VL; Karasik VE; Khorokhorov AM; Koshelev KI; Schadko AO; Yurchenko SO; Zaytsev KI
    Rev Sci Instrum; 2017 Jan; 88(1):014703. PubMed ID: 28147664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning laser terahertz near-field imaging system.
    Serita K; Mizuno S; Murakami H; Kawayama I; Takahashi Y; Yoshimura M; Mori Y; Darmo J; Tonouchi M
    Opt Express; 2012 Jun; 20(12):12959-65. PubMed ID: 22714323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field Terahertz Sensing of HeLa Cells and
    Bai Z; Liu Y; Kong R; Nie T; Sun Y; Li H; Sun T; Pandey C; Wang Y; Zhang H; Song Q; Liu G; Kraft M; Zhao W; Wu X; Wen L
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35895-35902. PubMed ID: 32643363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.