These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34154160)

  • 1. Ultra-thin and broadband surface wave meta-absorber.
    Deng T; Liang J; Cai T; Wang C; Wang X; Lou J; Du Z; Wang D
    Opt Express; 2021 Jun; 29(12):19193-19201. PubMed ID: 34154160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance meta-absorber for the surface wave under the spoof surface plasmon polariton mode.
    Deng T; Liang J; Lou J; Zhang C; Du Z; Wang C; Cai T
    Opt Express; 2021 Mar; 29(5):7558-7567. PubMed ID: 33726255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance and broadband chirality-dependent absorber based on planar spiral metasurface.
    Wang C; Liang J; Xiao Y; Cai T; Hou H; Li H
    Opt Express; 2019 May; 27(10):14942-14950. PubMed ID: 31163935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure.
    Ji W; Cai T; Wang G; Sun Y; Li H; Wang C; Zhang C; Zhang Q
    Opt Express; 2019 Oct; 27(22):32835-32845. PubMed ID: 31684488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research Progress of Electromagnetic Metasurface Used for Radar Cross Section Reduction in Microwave and Terahertz Wave].
    Yan X; LIang LJ; Zhang YT; Ding X; Yao JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1639-44. PubMed ID: 30052363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband and wide-angle metamaterial absorber based on the hybrid of spoof surface plasmonic polariton structure and resistive metasurface.
    Zhou F; Fu Y; Tan R; Zhou J; Chen P
    Opt Express; 2021 Oct; 29(21):34735-34747. PubMed ID: 34809256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
    Yoo YJ; Ju S; Park SY; Ju Kim Y; Bong J; Lim T; Kim KW; Rhee JY; Lee Y
    Sci Rep; 2015 Sep; 5():14018. PubMed ID: 26354891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance.
    Du Z; Liang J; Cai T; Wang G; Deng T; Wu B
    Opt Express; 2022 Jan; 30(2):914-925. PubMed ID: 35209270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.
    Fang J; Liu T; Chen Z; Wang Y; Wei W; Yue X; Jiang Z
    Nanoscale; 2016 Apr; 8(16):8899-909. PubMed ID: 27072200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.
    Rahmanzadeh M; Rajabalipanah H; Abdolali A
    Appl Opt; 2018 Feb; 57(4):959-968. PubMed ID: 29400774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable broadband/narrowband absorber based on a hybrid metasurface of graphene and metal structures.
    Feng J; Wu LS; Mao JF
    Opt Express; 2023 Apr; 31(8):12220-12231. PubMed ID: 37157386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances.
    Mehrabi M; Rajabalipanah H; Abdolali A; Tayarani M
    Appl Opt; 2018 May; 57(14):3693-3703. PubMed ID: 29791329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters.
    Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Broadband Absorber with Large Angular Stability Based on Frequency Selective Surface.
    Zhao S; Li W; Li Z; Shu H; Qi K; Yin H
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.