These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34154188)

  • 41. 26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode.
    Chen Y; Kong M; Ali T; Wang J; Sarwar R; Han J; Guo C; Sun B; Deng N; Xu J
    Opt Express; 2017 Jun; 25(13):14760-14765. PubMed ID: 28789059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of underwater wireless optical communication system performance.
    Yang Y; He F; Guo Q; Wang M; Zhang J; Duan Z
    Appl Opt; 2019 Dec; 58(36):9808-9814. PubMed ID: 31873624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental demonstration of real-time optical DFT-S DMT signal transmission for a blue-LED-based UWOC system using spatial diversity reception.
    Chen R; Du J; Wang Y; Fei C; Zhang T; Tian J; Zhang G; Hong X; He S
    Appl Opt; 2023 Jan; 62(3):541-551. PubMed ID: 36821256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication.
    Xu J; Kong M; Lin A; Song Y; Han J; Xu Z; Wu B; Gao S; Deng N
    Opt Lett; 2017 May; 42(9):1664-1667. PubMed ID: 28454130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Series-connected solar array for high-speed underwater wireless optical links.
    Tong Z; Yang X; Zhang H; Dai Y; Chen X; Xu J
    Opt Lett; 2022 Mar; 47(5):1013-1016. PubMed ID: 35230278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quasi-omnidirectional transmitter for underwater wireless optical communication systems using a prismatic array of three high-power blue LED modules.
    Tong Z; Yang X; Chen X; Zhang H; Zhang Y; Zou H; Zhao L; Xu J
    Opt Express; 2021 Jun; 29(13):20262-20274. PubMed ID: 34266119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers.
    Hai MS; Sakib MN; Liboiron-Ladouceur O
    Opt Express; 2013 Dec; 21(26):32680-9. PubMed ID: 24514861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ambient LED Light Noise Reduction Using Adaptive Differential Equalization in Li-Fi Wireless Link.
    Won YY; Yoon SM; Seo D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system.
    Lee C; Shen C; Oubei HM; Cantore M; Janjua B; Ng TK; Farrell RM; El-Desouki MM; Speck JS; Nakamura S; Ooi BS; DenBaars SP
    Opt Express; 2015 Nov; 23(23):29779-87. PubMed ID: 26698461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Multipath Attenuation in the Optical Communication-Based Internet of Underwater Things.
    Qadar R; Bin Qaim W; Nurmi J; Tan B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation.
    Vali Z; Gholami A; Ghassemlooy Z; Michelson DG; Omoomi M; Noori H
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jul; 34(7):1187-1193. PubMed ID: 29036128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-speed underwater optical wireless communication using a blue GaN-based micro-LED.
    Tian P; Liu X; Yi S; Huang Y; Zhang S; Zhou X; Hu L; Zheng L; Liu R
    Opt Express; 2017 Jan; 25(2):1193-1201. PubMed ID: 28158004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Demonstration of a 2 × 2 MIMO-UWOC system with large spot against air bubbles.
    Chen X; Dai Y; Tong Z; Yang X; Li X; Song G; Zou H; Jia B; Qin S; Zhang Z; Zhao J; Xu J
    Appl Opt; 2022 Jan; 61(1):41-48. PubMed ID: 35200800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser.
    Xu J; Song Y; Yu X; Lin A; Kong M; Han J; Deng N
    Opt Express; 2016 Apr; 24(8):8097-109. PubMed ID: 27137249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication.
    Sun X; Cai W; Alkhazragi O; Ooi EN; He H; Chaaban A; Shen C; Oubei HM; Khan MZM; Ng TK; Alouini MS; Ooi BS
    Opt Express; 2018 May; 26(10):12870-12877. PubMed ID: 29801320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Underwater Optical Wireless Communications: Overview.
    Schirripa Spagnolo G; Cozzella L; Leccese F
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transmitter for 1.9 Gbps phosphor white light visible light communication without a blue filter based on OOK-NRZ modulation.
    Wang Y; Chen X; Xu Y
    Opt Express; 2023 Feb; 31(5):7933-7946. PubMed ID: 36859914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling and performance analysis of oblique underwater optical communication links considering turbulence effects based on seawater depth layering.
    Ji X; Yin H; Jing L; Liang Y; Wang J
    Opt Express; 2022 May; 30(11):18874-18888. PubMed ID: 36221679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical wireless communication system performance in natural water turbulence of any strength.
    Yi X; Liu H; Ban K; Korotkova O
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2246-2256. PubMed ID: 36520743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monocular vision aided optical tracking for underwater optical wireless communications.
    Tang J; Jiang R; Chen Z; Zhu Z
    Opt Express; 2022 Apr; 30(9):14737-14747. PubMed ID: 35473211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.