These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34154211)

  • 1. Direct detection of polystyrene equivalent nanoparticles with a diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry.
    Kolenov D; Zadeh IE; Horsten RC; Pereira SF
    Opt Express; 2021 May; 29(11):16487-16505. PubMed ID: 34154211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Fourier scatterometry nanoparticle detection enhanced by synthetic optical holography.
    Yin H; Kolenov D; Pereira SF
    Opt Lett; 2022 Aug; 47(15):3840-3843. PubMed ID: 35913328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct detection of polystyrene equivalent nanoparticles with diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry: erratum.
    Kolenov D; Zadeh IE; Horsten RC; Pereira SF
    Opt Express; 2022 Aug; 30(16):29841-29843. PubMed ID: 36299150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning techniques applied for the detection of nanoparticles on surfaces using coherent Fourier scatterometry.
    Kolenov D; Pereira SF
    Opt Express; 2020 Jun; 28(13):19163-19186. PubMed ID: 32672200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection.
    Wang B; Tanksalvala M; Zhang Z; Esashi Y; Jenkins NW; Murnane MM; Kapteyn HC; Liao CT
    Opt Express; 2021 Feb; 29(3):3342-3358. PubMed ID: 33770934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry.
    Kumar N; Petrik P; Ramanandan GK; El Gawhary O; Roy S; Pereira SF; Coene WM; Urbach HP
    Opt Express; 2014 Oct; 22(20):24678-88. PubMed ID: 25322042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface.
    Roy S; Assafrão AC; Pereira SF; Urbach HP
    Opt Express; 2014 Jun; 22(11):13250-62. PubMed ID: 24921519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Fourier scatterometry: a holistic tool for inspection of isolated particles or defects on gratings.
    Paul A; Kolenov D; Scholte T; Pereira SF
    Appl Opt; 2023 Oct; 62(29):7589-7595. PubMed ID: 37855466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by E-beam Lithography.
    Rananavare SB; Morakinyo MK
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural network applied for nanoparticle classification using coherent scatterometry data.
    Kolenov D; Davidse D; Le Cam J; Pereira SF
    Appl Opt; 2020 Sep; 59(27):8426-8433. PubMed ID: 32976437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry.
    Dou X; Min C; Zhang Y; Pereira SF; Yuan X
    Opt Express; 2022 Aug; 30(16):29287-29294. PubMed ID: 36299106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sphere-surface distance and exposure dose on resolution of sphere-lens-array lithography.
    Liu X; Li X; Li L; Chen W; Luo X
    Opt Express; 2015 Nov; 23(23):30136-42. PubMed ID: 26698494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent Fourier scatterometry reveals nerve fiber crossings in the brain.
    Menzel M; Pereira SF
    Biomed Opt Express; 2020 Aug; 11(8):4735-4758. PubMed ID: 32923075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the full scattering matrix using coherent Fourier scatterometry.
    Kumar N; Cisotto L; Roy S; Ramanandan GK; Pereira SF; Paul Urbach H
    Appl Opt; 2016 Jun; 55(16):4408-13. PubMed ID: 27411195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopillar array with a λ/11 diameter fabricated by a kind of visible CW laser direct lithography system.
    Zhang C; Wang K; Bai J; Wang S; Zhao W; Yang F; Gu C; Wang G
    Nanoscale Res Lett; 2013 Jun; 8(1):280. PubMed ID: 23759031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Angular Dependency of Particulate Light Scattering Intensity on Determination of Samples with Bimodal Size Distributions Using Dynamic Light Scattering Methods.
    Kato H; Nakamura A; Kinugasa S
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and detection of individual submicron particles by capillary electrophoresis with laser-light-scattering detection.
    Rezenom YH; Wellman AD; Tilstra L; Medley CD; Gilman SD
    Analyst; 2007 Dec; 132(12):1215-22. PubMed ID: 18318282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color filter incorporating a subwavelength patterned grating in poly silicon.
    Yoon YT; Lee HS; Lee SS; Kim SH; Park JD; Lee KD
    Opt Express; 2008 Feb; 16(4):2374-80. PubMed ID: 18542315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable vapor-condensed nanolenses.
    McLeod E; Nguyen C; Huang P; Luo W; Veli M; Ozcan A
    ACS Nano; 2014 Jul; 8(7):7340-9. PubMed ID: 24979060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate.
    Roy S; Ushakova K; van den Berg Q; Pereira SF; Urbach HP
    Phys Rev Lett; 2015 Mar; 114(10):103903. PubMed ID: 25815935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.