These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34154249)

  • 1. Design and characterization of microstrip patch antennas for high-T
    Tsujimoto M; Kaneko Y; Kuwano G; Nagayama K; Imai T; Ono Y; Kusunose S; Kashiwagi T; Minami H; Kadowaki K; Simsek Y; Welp U; Kwok WK
    Opt Express; 2021 May; 29(11):16980-16989. PubMed ID: 34154249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 0.43 THz emission from high-T(c) superconducting emitters optimized at 77 K.
    Minami H; Watanabe C; Kashiwagi T; Yamamoto T; Kadowaki K; Klemm RA
    J Phys Condens Matter; 2016 Jan; 28(2):025701. PubMed ID: 26654902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-T
    Cerkoney DP; Reid C; Doty CM; Gramajo A; Campbell TD; Morales MA; Delfanazari K; Tsujimoto M; Kashiwagi T; Yamamoto T; Watanabe C; Minami H; Kadowaki K; Klemm RA
    J Phys Condens Matter; 2017 Jan; 29(1):015601. PubMed ID: 27830669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Radiation Characteristics of Intrinsic Josephson Junction Terahertz Emitters with Different Thickness of Bi
    Kashiwagi T; Yuasa T; Kuwano G; Yamamoto T; Tsujimoto M; Minami H; Kadowaki K
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral investigation of hot spot and cavity resonance effects on the terahertz radiation from high-T(c) superconducting Bi2Sr2CaCu2O(8+δ) mesas.
    Watanabe C; Minami H; Yamamoto T; Kashiwagi T; Klemm RA; Kadowaki K
    J Phys Condens Matter; 2014 Apr; 26(17):172201. PubMed ID: 24713543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.
    Yardimci NT; Lu H; Jarrahi M
    Appl Phys Lett; 2016 Nov; 109(19):191103. PubMed ID: 27916999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.
    Yang J; Wang H; Lv Z; Wang H
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27355954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Josephson-vortex-flow terahertz emission in layered high-Tc superconducting single crystals.
    Bae MH; Lee HJ; Choi JH
    Phys Rev Lett; 2007 Jan; 98(2):027002. PubMed ID: 17358637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Chip Sensing of Hotspots in Superconducting Terahertz Emitters.
    Zhou X; Han X; Koelle D; Kleiner R; Welp U; Zhang X; Jin D
    Nano Lett; 2020 Jun; 20(6):4197-4203. PubMed ID: 32396380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Design for Stretchable Microstrip Antennas.
    Zhu J; Fox JJ; Yi N; Cheng H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8867-8877. PubMed ID: 30758181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications using high-Tc superconducting terahertz emitters.
    Nakade K; Kashiwagi T; Saiwai Y; Minami H; Yamamoto T; Klemm RA; Kadowaki K
    Sci Rep; 2016 Mar; 6():23178. PubMed ID: 26983905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation pattern of planar optoelectronic antennas for broadband continuous-wave terahertz emission.
    Nellen S; Lauck S; Schwanke G; Deumer M; Kohlhaas RB; Liebermeister L; Schell M; Globisch B
    Opt Express; 2021 Mar; 29(6):8244-8257. PubMed ID: 33820274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of tailored terahertz waves from monolithic integrated metamaterials onto spintronic terahertz emitters.
    Liu Y; Bai Z; Xu Y; Wu X; Sun Y; Li H; Sun T; Kong R; Pandey C; Kraft M; Song Q; Zhao W; Nie T; Wen L
    Nanotechnology; 2021 Mar; 32(10):105201. PubMed ID: 33217749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging.
    Samanta D; Karthikeyan MP; Banerjee A; Inokawa H
    Nanomedicine (Lond); 2021 May; 16(12):1035-1047. PubMed ID: 33970689
    [No Abstract]   [Full Text] [Related]  

  • 15. Low loss and magnetic field-tunable superconducting terahertz metamaterial.
    Jin B; Zhang C; Engelbrecht S; Pimenov A; Wu J; Xu Q; Cao C; Chen J; Xu W; Kang L; Wu P
    Opt Express; 2010 Aug; 18(16):17504-9. PubMed ID: 20721135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design aspects of Bi
    Krasnov MM; Novikova ND; Cattaneo R; Kalenyuk AA; Krasnov VM
    Beilstein J Nanotechnol; 2021; 12():1392-1403. PubMed ID: 35004123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of reflectarray antennas at terahertz frequencies.
    Niu T; Withayachumnankul W; Ung BS; Menekse H; Bhaskaran M; Sriram S; Fumeaux C
    Opt Express; 2013 Feb; 21(3):2875-89. PubMed ID: 23481746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface enhancement of THz wave by coupling a subwavelength LiNbO
    Zhang Q; Qi J; Wu Q; Lu Y; Zhao W; Wang R; Pan C; Wang S; Xu J
    Sci Rep; 2017 Dec; 7(1):17602. PubMed ID: 29242537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of Bow-Tie Antenna Structures for Semi-Insulating GaAs and InP Photoconductive Terahertz Emitters.
    Alfihed S; Foulds IG; Holzman JF
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity mode identification for coherent terahertz emission from high-Tc superconductors.
    Tsujimoto M; Kakeya I; Kashiwagi T; Minami H; Kadowaki K
    Opt Express; 2016 Mar; 24(5):4591-4599. PubMed ID: 29092286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.