BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34154295)

  • 1. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercontinuum-based hyperspectral LiDAR for precision laser scanning.
    Ray P; Salido-Monzú D; Camenzind SL; Wieser A
    Opt Express; 2023 Sep; 31(20):33486-33499. PubMed ID: 37859130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-channel hyperspectral LiDAR with a supercontinuum laser source.
    Chen Y; Räikkönen E; Kaasalainen S; Suomalainen J; Hakala T; Hyyppä J; Chen R
    Sensors (Basel); 2010; 10(7):7057-66. PubMed ID: 22163589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Nanoscopy with Infrared Elastic Hyperspectral Lidar.
    Müller L; Li M; Månefjord H; Salvador J; Reistad N; Hernandez J; Kirkeby C; Runemark A; Brydegaard M
    Adv Sci (Weinh); 2023 May; 10(15):e2207110. PubMed ID: 36965063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO
    Refaat TF; Singh UN; Petros M; Remus R; Yu J
    Appl Opt; 2015 Aug; 54(24):7240-51. PubMed ID: 26368759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and Radiometric Calibration for Backscatter Intensity of Hyperspectral LiDAR Caused by Incident Angle Effect.
    Tian W; Tang L; Chen Y; Li Z; Zhu J; Jiang C; Hu P; He W; Wu H; Pan M; Lu J; Hyyppä J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared hyperspectral sensor based on MEMS Fabry-Pérot interferometer for stand-off sensing applications.
    Saleh A; Mekhrengin M; Dönsberg T; Kääriäinen T; Genoud G; Toivonen J
    Sci Rep; 2022 Nov; 12(1):19392. PubMed ID: 36371513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact dual-wavelength blue-green laser for airborne ocean detection lidar.
    Ma J; Lu T; He Y; Jiang Z; Hou C; Li K; Liu F; Zhu X; Chen W
    Appl Opt; 2020 Apr; 59(10):C87-C91. PubMed ID: 32400569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for optical adjustment in lidar systems.
    Liu B; Yi F; Yu CM
    Appl Opt; 2005 Mar; 44(8):1480-4. PubMed ID: 15796249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.
    Manninen A; Kääriäinen T; Parviainen T; Buchter S; Heiliö M; Laurila T
    Opt Express; 2014 Mar; 22(6):7172-7. PubMed ID: 24664065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.
    Hakkenberg CR; Peet RK; Urban DL; Song C
    Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and efficient 1064 nm up-conversion atmospheric lidar.
    Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X
    Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.