BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34154420)

  • 21. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics.
    Sun J; Lu X; Rinas U; Zeng AP
    Genome Biol; 2007; 8(9):R182. PubMed ID: 17784953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A benzoate-activated promoter from Aspergillus niger and regulation of its activity.
    Antunes MS; Hodges TK; Carpita NC
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5479-89. PubMed ID: 26907094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era.
    Tong Z; Zheng X; Tong Y; Shi YC; Sun J
    Microb Cell Fact; 2019 Feb; 18(1):28. PubMed ID: 30717739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance.
    Lubbers RJM; Liwanag AJ; Peng M; Dilokpimol A; Benoit-Gelber I; de Vries RP
    J Appl Microbiol; 2020 Mar; 128(3):735-746. PubMed ID: 31674709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties.
    Melzer G; Esfandabadi ME; Franco-Lara E; Wittmann C
    BMC Syst Biol; 2009 Dec; 3():120. PubMed ID: 20035624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.
    Niu J; Arentshorst M; Nair PD; Dai Z; Baker SE; Frisvad JC; Nielsen KF; Punt PJ; Ram AF
    G3 (Bethesda); 2015 Nov; 6(1):193-204. PubMed ID: 26566947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.
    Santos PSM; Domingues MRM; Duarte AC
    Chemosphere; 2016 Jul; 154():599-603. PubMed ID: 27088537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of Plant-Derived Phenolic Acids.
    Tinikul R; Chenprakhon P; Maenpuen S; Chaiyen P
    Biotechnol J; 2018 Jun; 13(6):e1700632. PubMed ID: 29278307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catabolism of aromatic acids in Trichosporon cutaneum.
    Anderson JJ; Dagley S
    J Bacteriol; 1980 Feb; 141(2):534-43. PubMed ID: 7364712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger.
    Geoghegan IA; Stratford M; Bromley M; Archer DB; Avery SV
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31915214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered
    Kim HS; Choi JA; Kim BY; Ferrer L; Choi JM; Wendisch VF; Lee JH
    Front Bioeng Biotechnol; 2022; 10():880277. PubMed ID: 35646884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in microbial production of aromatic natural products and their derivatives.
    Wang J; Shen X; Rey J; Yuan Q; Yan Y
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):47-61. PubMed ID: 29127467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger.
    Andersen MR; Nielsen ML; Nielsen J
    Mol Syst Biol; 2008; 4():178. PubMed ID: 18364712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.
    Kuivanen J; Mojzita D; Wang Y; Hilditch S; Penttilä M; Richard P; Wiebe MG
    Appl Environ Microbiol; 2012 Dec; 78(24):8676-83. PubMed ID: 23042175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of 3-hydroxybenzoic acid by a Bacillus species.
    Mashetty SB; Manohar S; Karegoudar TB
    Indian J Biochem Biophys; 1996 Apr; 33(2):145-8. PubMed ID: 8754626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.
    Martins TM; Hartmann DO; Planchon S; Martins I; Renaut J; Silva Pereira C
    Fungal Genet Biol; 2015 Jan; 74():32-44. PubMed ID: 25479309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.