BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34154515)

  • 1. Molecular dynamic and in vitro evaluation of chitosan/tripolyphosphate nanoparticles as an insulin delivery system at two different pH values.
    Nejabat M; Kalani MR; Nejabat M; Hadizadeh F
    J Biomol Struct Dyn; 2022; 40(20):10153-10161. PubMed ID: 34154515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier.
    Lin CC; Lin CW
    Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.
    Esmaeili A; Asgari A
    Int J Biol Macromol; 2015 Nov; 81():283-90. PubMed ID: 26257380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers.
    Raja MA; Katas H; Jing Wen T
    PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.
    Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X
    J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of a novel peptide-grafted Cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study.
    Barbari GR; Dorkoosh F; Amini M; Bahari Javan N; Sharifzadeh M; Atyabi F; Balalaie S; Rafiee Tehrani N; Rafiee Tehrani M
    Int J Nanomedicine; 2018; 13():5127-5138. PubMed ID: 30233176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release.
    Li J; Wu H; Jiang K; Liu Y; Yang L; Park HJ
    Appl Biochem Biotechnol; 2021 Feb; 193(2):463-478. PubMed ID: 33026616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.
    Keawchaoon L; Yoksan R
    Colloids Surf B Biointerfaces; 2011 May; 84(1):163-71. PubMed ID: 21296562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration.
    Hecq J; Siepmann F; Siepmann J; Amighi K; Goole J
    Drug Dev Ind Pharm; 2015; 41(12):2037-44. PubMed ID: 26006329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan nanoparticles: Polyphosphates cross-linking and protein delivery properties.
    Abdelgawad AM; Hudson SM
    Int J Biol Macromol; 2019 Sep; 136():133-142. PubMed ID: 31199974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery.
    Makhlof A; Tozuka Y; Takeuchi H
    Eur J Pharm Sci; 2011 Apr; 42(5):445-51. PubMed ID: 21182939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study.
    Hosseinzadeh H; Atyabi F; Dinarvand R; Ostad SN
    Int J Nanomedicine; 2012; 7():1851-63. PubMed ID: 22605934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System.
    Yadollahi Z; Motiei M; Kazantseva N; Císař J; Sáha P
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs.
    Motiei M; Kashanian S
    Eur J Pharm Sci; 2017 Mar; 99():285-291. PubMed ID: 28057549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides.
    Du Z; Liu J; Zhang T; Yu Y; Zhang Y; Zhai J; Huang H; Wei S; Ding L; Liu B
    Food Chem; 2019 Jul; 286():530-536. PubMed ID: 30827643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pitfalls in analyzing release from chitosan/tripolyphosphate micro- and nanoparticles.
    Cai Y; Lapitsky Y
    Eur J Pharm Biopharm; 2019 Sep; 142():204-215. PubMed ID: 31226368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate.
    Kalam MA; Iqbal M; Alshememry A; Alkholief M; Alshamsan A
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios.
    Hejjaji EMA; Smith AM; Morris GA
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1610-1617. PubMed ID: 30282010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.