BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

910 related articles for article (PubMed ID: 34154533)

  • 1. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage.
    Kumar S; Agrawal A; Seem K; Kumar S; Vinod KK; Mohapatra T
    Plant Mol Biol; 2022 May; 109(1-2):29-50. PubMed ID: 35275352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice.
    Prathap V; Kumar S; Tyagi A
    Int J Biol Macromol; 2023 Apr; 234():123760. PubMed ID: 36812961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.
    Dai X; Wang Y; Zhang WH
    J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice.
    Gu M; Zhang J; Li H; Meng D; Li R; Dai X; Wang S; Liu W; Qu H; Xu G
    J Exp Bot; 2017 Jun; 68(13):3603-3615. PubMed ID: 28549191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency.
    Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G
    BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1.
    Chin JH; Lu X; Haefele SM; Gamuyao R; Ismail A; Wissuwa M; Heuer S
    Theor Appl Genet; 2010 Apr; 120(6):1073-86. PubMed ID: 20035315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiles in rice roots under low phosphorus stress.
    Li L; Liu C; Lian X
    Plant Mol Biol; 2010 Mar; 72(4-5):423-32. PubMed ID: 19936943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS.
    Mai NTP; Mai CD; Nguyen HV; Le KQ; Duong LV; Tran TA; To HTM
    J Plant Physiol; 2021 Feb; 257():153340. PubMed ID: 33388665
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Kumar S; Seem K; Kumar S; Vinod KK; Chinnusamy V; Mohapatra T
    Front Plant Sci; 2022; 13():871890. PubMed ID: 35712593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice.
    Dai X; Wang Y; Yang A; Zhang WH
    Plant Physiol; 2012 May; 159(1):169-83. PubMed ID: 22395576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.
    Tyagi W; Rai M
    Protoplasma; 2017 Mar; 254(2):725-736. PubMed ID: 27228993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa).
    Wang S; Zhang S; Sun C; Xu Y; Chen Y; Yu C; Qian Q; Jiang DA; Qi Y
    New Phytol; 2014 Jan; 201(1):91-103. PubMed ID: 24111723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight and blast resistance.
    Chithrameenal K; Alagarasan G; Raveendran M; Robin S; Meena S; Ramanathan A; Ramalingam J
    PLoS One; 2018; 13(9):e0204144. PubMed ID: 30260973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice.
    Wang S; Zhang J; Gu M; Xu G
    Plant Signal Behav; 2021 Nov; 16(11):1976545. PubMed ID: 34523389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.