BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34154633)

  • 1. GxEsum: a novel approach to estimate the phenotypic variance explained by genome-wide GxE interaction based on GWAS summary statistics for biobank-scale data.
    Shin J; Lee SH
    Genome Biol; 2021 Jun; 22(1):183. PubMed ID: 34154633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits.
    Zheng JS; Arnett DK; Lee YC; Shen J; Parnell LD; Smith CE; Richardson K; Li D; Borecki IB; Ordovás JM; Lai CQ
    PLoS One; 2013; 8(10):e77442. PubMed ID: 24204828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
    Verhulst B; Pritikin JN; Clifford J; Prom-Wormley E
    Behav Genet; 2021 May; 51(3):358-373. PubMed ID: 33899139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets.
    Di Scipio M; Khan M; Mao S; Chong M; Judge C; Pathan N; Perrot N; Nelson W; Lali R; Di S; Morton R; Petch J; Paré G
    Nat Commun; 2023 Aug; 14(1):5196. PubMed ID: 37626057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide interaction of genotype by erythrocyte n-3 fatty acids contributes to phenotypic variance of diabetes-related traits.
    Zheng JS; Lai CQ; Parnell LD; Lee YC; Shen J; Smith CE; Casas-Agustench P; Richardson K; Li D; Noel SE; Tucker KL; Arnett DK; Borecki IB; Ordovás JM
    BMC Genomics; 2014 Sep; 15(1):781. PubMed ID: 25213455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model.
    Kerin M; Marchini J
    Am J Hum Genet; 2020 Oct; 107(4):698-713. PubMed ID: 32888427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland.
    Arnau-Soler A; Macdonald-Dunlop E; Adams MJ; Clarke TK; MacIntyre DJ; Milburn K; Navrady L; ; ; Hayward C; McIntosh AM; Thomson PA
    Transl Psychiatry; 2019 Feb; 9(1):14. PubMed ID: 30718454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
    Domingue BW; Kanopka K; Mallard TT; Trejo S; Tucker-Drob EM
    Behav Genet; 2022 Jan; 52(1):56-64. PubMed ID: 34855050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.
    Bi W; Zhao Z; Dey R; Fritsche LG; Mukherjee B; Lee S
    Am J Hum Genet; 2019 Dec; 105(6):1182-1192. PubMed ID: 31735295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio.
    Lloyd-Jones LR; Robinson MR; Yang J; Visscher PM
    Genetics; 2018 Apr; 208(4):1397-1408. PubMed ID: 29429966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture.
    Hou K; Burch KS; Majumdar A; Shi H; Mancuso N; Wu Y; Sankararaman S; Pasaniuc B
    Nat Genet; 2019 Aug; 51(8):1244-1251. PubMed ID: 31358995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
    Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG
    Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast estimation of genetic correlation for biobank-scale data.
    Wu Y; Burch KS; Ganna A; Pajukanta P; Pasaniuc B; Sankararaman S
    Am J Hum Genet; 2022 Jan; 109(1):24-32. PubMed ID: 34861179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank.
    Wang H; Zhang F; Zeng J; Wu Y; Kemper KE; Xue A; Zhang M; Powell JE; Goddard ME; Wray NR; Visscher PM; McRae AF; Yang J
    Sci Adv; 2019 Aug; 5(8):eaaw3538. PubMed ID: 31453325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast and powerful linear mixed model approach for genotype-environment interaction tests in large-scale GWAS.
    Zhong W; Chhibber A; Luo L; Mehrotra DV; Shen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-environment interaction explains a part of missing heritability in human body mass index.
    Jung HU; Kim DJ; Baek EJ; Chung JY; Ha TW; Kim HK; Kang JO; Lim JE; Oh B
    Commun Biol; 2023 Mar; 6(1):324. PubMed ID: 36966243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring polygenic-environment and residual-environment interactions for depressive symptoms within the UK Biobank.
    Gillett AC; Jermy BS; Lee SH; Pain O; Howard DM; Hagenaars SP; Hanscombe KB; Coleman JRI; Lewis CM
    Genet Epidemiol; 2022 Jul; 46(5-6):219-233. PubMed ID: 35438196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative analysis of genomic and exposomic data for complex traits and phenotypic prediction.
    Zhou X; Lee SH
    Sci Rep; 2021 Nov; 11(1):21495. PubMed ID: 34728654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A linear mixed-model approach to study multivariate gene-environment interactions.
    Moore R; Casale FP; Jan Bonder M; Horta D; ; Franke L; Barroso I; Stegle O
    Nat Genet; 2019 Jan; 51(1):180-186. PubMed ID: 30478441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEAGLE: A Scalable Exact Algorithm for Large-Scale Set-Based Gene-Environment Interaction Tests in Biobank Data.
    Chi JT; Ipsen ICF; Hsiao TH; Lin CH; Wang LS; Lee WP; Lu TP; Tzeng JY
    Front Genet; 2021; 12():710055. PubMed ID: 34795690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.