These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 34154649)

  • 1. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies.
    Zhu J; Sun S; Zhou X
    Genome Biol; 2021 Jun; 22(1):184. PubMed ID: 34154649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.
    Sun S; Zhu J; Zhou X
    Nat Methods; 2020 Feb; 17(2):193-200. PubMed ID: 31988518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpatialSPM: statistical parametric mapping for the comparison of gene expression pattern images in multiple spatial transcriptomic datasets.
    Ohn J; Seo MK; Park J; Lee D; Choi H
    Nucleic Acids Res; 2024 Jun; 52(11):e51. PubMed ID: 38676948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics.
    Yuan X; Ma Y; Gao R; Cui S; Wang Y; Fa B; Ma S; Wei T; Ma S; Yu Z
    Nat Commun; 2024 Jul; 15(1):5700. PubMed ID: 38972896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical analysis of spatially resolved transcriptomic data by incorporating multiomics auxiliary information.
    Li Y; Zhou X; Cao H
    Genetics; 2022 Jul; 221(4):. PubMed ID: 35731210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrospective analysis: reproducibility of interblastomere differences of mRNA expression in 2-cell stage mouse embryos is remarkably poor due to combinatorial mechanisms of blastomere diversification.
    Casser E; Israel S; Schlatt S; Nordhoff V; Boiani M
    Mol Hum Reprod; 2018 Jul; 24(7):388-400. PubMed ID: 29746690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of allele-specific expression in spatial transcriptomics with spASE.
    Zou LS; Cable DM; Barrera-Lopez IA; Zhao T; Murray E; Aryee MJ; Chen F; Irizarry RA
    Genome Biol; 2024 Jul; 25(1):180. PubMed ID: 38978101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    PLoS Genet; 2023 Oct; 19(10):e1010983. PubMed ID: 37862362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk.
    Shao X; Li C; Yang H; Lu X; Liao J; Qian J; Wang K; Cheng J; Yang P; Chen H; Xu X; Fan X
    Nat Commun; 2022 Jul; 13(1):4429. PubMed ID: 35908020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain.
    Grisanti Canozo FJ; Zuo Z; Martin JF; Samee MAH
    Cell Syst; 2022 Jan; 13(1):58-70.e5. PubMed ID: 34626538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automation of Spatial Transcriptomics library preparation to enable rapid and robust insights into spatial organization of tissues.
    Berglund E; Saarenpää S; Jemt A; Gruselius J; Larsson L; Bergenstråhle L; Lundeberg J; Giacomello S
    BMC Genomics; 2020 Apr; 21(1):298. PubMed ID: 32293264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.