BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 34154700)

  • 1. Biomaterials-assisted spheroid engineering for regenerative therapy.
    Lee NH; Bayaraa O; Zechu Z; Kim HS
    BMB Rep; 2021 Jul; 54(7):356-367. PubMed ID: 34154700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels.
    Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK
    Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin.
    Gionet-Gonzales MA; Leach JK
    Biomed Mater; 2018 Mar; 13(3):034109. PubMed ID: 29460842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels.
    Vorwald CE; Ho SS; Whitehead J; Leach JK
    Methods Mol Biol; 2018; 1758():139-149. PubMed ID: 29679328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.
    Ibáñez-Fonseca A; Ramos TL; González de Torre I; Sánchez-Abarca LI; Muntión S; Arias FJ; Del Cañizo MC; Alonso M; Sánchez-Guijo F; Rodríguez-Cabello JC
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1450-e1460. PubMed ID: 28865091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials.
    Gugliandolo A; Fonticoli L; Trubiani O; Rajan TS; Marconi GD; Bramanti P; Mazzon E; Pizzicannella J; Diomede F
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34063438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering.
    Mesure B; Menu P; Venkatesan JK; Cucchiarini M; Velot É
    Curr Stem Cell Res Ther; 2019; 14(4):337-343. PubMed ID: 30516113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
    Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P
    Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cells for tissue engineering and regenerative medicine.
    Tae SK; Lee SH; Park JS; Im GI
    Biomed Mater; 2006 Jun; 1(2):63-71. PubMed ID: 18460758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential.
    Chen LC; Wang HW; Huang CC
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine.
    Kim SJ; Kim EM; Yamamoto M; Park H; Shin H
    Adv Healthc Mater; 2020 Dec; 9(23):e2000608. PubMed ID: 32734719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.
    Sahito RG; Sureshkumar P; Sotiriadou I; Srinivasan SP; Sabour D; Hescheler J; Pfannkuche K; Sachinidis A
    Curr Med Chem; 2016; 23(6):589-602. PubMed ID: 26951086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold-Free Spheroids Derived from Stem Cells for Tissue-Engineering Applications.
    Desai KU; Salve PM; Sapkal NB; Dave JR; Tomar GB
    Crit Rev Biomed Eng; 2018; 46(5):469-493. PubMed ID: 30806263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Migration and Bone Formation from Mesenchymal Stem Cell Spheroids in Alginate Hydrogels Are Regulated by Adhesive Ligand Density.
    Ho SS; Keown AT; Addison B; Leach JK
    Biomacromolecules; 2017 Dec; 18(12):4331-4340. PubMed ID: 29131587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials for Bone Regenerative Engineering.
    Yu X; Tang X; Gohil SV; Laurencin CT
    Adv Healthc Mater; 2015 Jun; 4(9):1268-85. PubMed ID: 25846250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal tissue regeneration: where can hydrogels play a role?
    Moreira Teixeira LS; Patterson J; Luyten FP
    Int Orthop; 2014 Sep; 38(9):1861-76. PubMed ID: 24968789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration.
    Kang Y; Na J; Karima G; Amirthalingam S; Hwang NS; Kim HD
    Tissue Eng Regen Med; 2024 Jul; 21(5):673-693. PubMed ID: 38578424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.