BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34154771)

  • 1. The effect of compressive loading rate on annulus fibrosus strength following endplate fracture.
    McMorran JG; Gregory DE
    Med Eng Phys; 2021 Jul; 93():17-26. PubMed ID: 34154771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of intervertebral disc damage on the mechanical strength of the annulus fibrosus in the adjacent segment.
    Chow N; Gregory DE
    Spine J; 2023 Dec; 23(12):1935-1940. PubMed ID: 37487934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid increase in intradiscal pressure in porcine cervical spine units negatively impacts annulus fibrosus strength.
    Ghelani RN; Zwambag DP; Gregory DE
    J Biomech; 2020 Jul; 108():109888. PubMed ID: 32636001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs.
    Yang B; O'Connell GD
    Acta Biomater; 2019 Dec; 100():61-74. PubMed ID: 31568880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo biomechanical evaluation of Acute lumbar endplate injury and comparison to annulus fibrosus injury in a rat model.
    Wang D; Lai A; Gansau J; Nasser P; Lee Y; Laudier DM; Iatridis JC
    J Mech Behav Biomed Mater; 2022 Jul; 131():105234. PubMed ID: 35462160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration.
    Przybyla A; Pollintine P; Bedzinski R; Adams MA
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1013-9. PubMed ID: 16956702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age.
    Dolan P; Luo J; Pollintine P; Landham PR; Stefanakis M; Adams MA
    Spine (Phila Pa 1976); 2013 Aug; 38(17):1473-81. PubMed ID: 23486408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway.
    van Heeswijk VM; Thambyah A; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2017 Nov; 42(21):1604-1613. PubMed ID: 28368980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Height and torsional stiffness are most sensitive to annular injury in large animal intervertebral discs.
    Michalek AJ; Iatridis JC
    Spine J; 2012 May; 12(5):425-32. PubMed ID: 22627276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Axial Torsion on the Mechanical Properties of the Annulus Fibrosus.
    Harvey-Burgess M; Gregory DE
    Spine (Phila Pa 1976); 2019 Feb; 44(4):E195-E201. PubMed ID: 30721160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis).
    Goto K; Tajima N; Chosa E; Totoribe K; Kubo S; Kuroki H; Arai T
    J Orthop Sci; 2003; 8(4):577-84. PubMed ID: 12898313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of lumbar endplates and their correlation with MRI findings of lumbar degeneration.
    Liu J; Hao L; Suyou L; Shan Z; Maiwulanjiang M; Li S; Wang C; Fan S; Zhao F
    J Biomech; 2016 Feb; 49(4):586-93. PubMed ID: 26892896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of intervertebral disc degeneration on mechanical and electric signals at the interface between disc and vertebra.
    Zhu Q; Gao X; Chen S; Gu W; Brown MD
    J Biomech; 2020 May; 104():109756. PubMed ID: 32248941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [EXPERIMENTAL STUDY ON EFFECT OF THREE DIFFERENT OPERATIVE WAYS OF ANNULUS FIBROSUS INCISION ON INTERVERTEBRAL DISC BIOMECHANICAL STRENGTH].
    Li P; Jia N; Shen Y; Jin X; Shen Y; Ding W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Feb; 30(2):202-7. PubMed ID: 27276815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading.
    Zehra U; Robson-Brown K; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Aug; 40(15):1173-80. PubMed ID: 25893360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.
    Rodrigues SA; Thambyah A; Broom ND
    Spine J; 2015 Mar; 15(3):405-16. PubMed ID: 25554584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined flexion and compression negatively impact the mechanical integrity of the annulus fibrosus.
    Briar KJ; Gregory DE
    Eur Spine J; 2023 Mar; 32(3):831-838. PubMed ID: 36631712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone.
    Jackman TM; Hussein AI; Adams AM; Makhnejia KK; Morgan EF
    J Orthop Res; 2014 Jul; 32(7):880-6. PubMed ID: 24700382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.