BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34155086)

  • 1. Rescuing Auditory Temporal Processing with a Novel Augmented Acoustic Environment in an Animal Model of Congenital Hearing Loss.
    Dziorny AC; Luebke AE; Scott LL; Walton JP
    eNeuro; 2021; 8(4):. PubMed ID: 34155086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice.
    Willott JF; Turner JG
    Hear Res; 1999 Sep; 135(1-2):78-88. PubMed ID: 10491957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment.
    Willott JF; Turner JG; Sundin VS
    Hear Res; 2000 Apr; 142(1-2):79-88. PubMed ID: 10748331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition.
    Willott JF; Turner JG
    Hear Res; 2000 Sep; 147(1-2):275-81. PubMed ID: 10962191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bross LS; McFadden S
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):234-43. PubMed ID: 15983726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolated auditory neuropathy at birth in congenital cytomegalovirus infection.
    Natale F; De Curtis M; Bizzarri B; Orlando MP; Ralli M; Liuzzi G; Caravale B; Franco F; Gaeta A; Giancotti A; Russo FY; Turchetta R
    Ital J Pediatr; 2020 Jan; 46(1):3. PubMed ID: 31906974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System.
    Anderson LA; Linden JF
    J Neurosci; 2016 Feb; 36(6):1977-95. PubMed ID: 26865621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely low birth weight infants are at high risk for auditory neuropathy.
    Xoinis K; Weirather Y; Mavoori H; Shaha SH; Iwamoto LM
    J Perinatol; 2007 Nov; 27(11):718-23. PubMed ID: 17703185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss.
    Green DB; Mattingly MM; Ye Y; Gay JD; Rosen MJ
    J Neurosci; 2017 Aug; 37(32):7759-7771. PubMed ID: 28706081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of prepulse inhibition by an augmented acoustic environment in DBA/2J mice.
    Jeskey JE; Willott JF
    Behav Neurosci; 2000 Oct; 114(5):991-7. PubMed ID: 11085614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorineural hearing loss and neural correlates of temporal acuity in the inferior colliculus of the C57BL/6 mouse.
    Walton JP; Barsz K; Wilson WW
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):90-101. PubMed ID: 17994264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BALB/c mouse as an animal model for progressive sensorineural hearing loss.
    Willott JF; Turner JG; Carlson S; Ding D; Seegers Bross L; Falls WA
    Hear Res; 1998 Jan; 115(1-2):162-74. PubMed ID: 9472745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in tonal audiometry in children with progressive sensorineural hearing loss and history of Neonatal Intensive Care Unit discharge. A 20 year long-term follow-up.
    Martínez-Cruz CF; Poblano A; García-Alonso Themann P
    Int J Pediatr Otorhinolaryngol; 2017 Oct; 101():235-240. PubMed ID: 28964301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic acetylcholine receptor subunit α
    Felix RA; Chavez VA; Novicio DM; Morley BJ; Portfors CV
    J Neurophysiol; 2019 Aug; 122(2):451-465. PubMed ID: 31116647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.