BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34155210)

  • 1. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active coacervate droplets as a model for membraneless organelles and protocells.
    Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J
    Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water.
    van Swaay D; Tang TY; Mann S; de Mello A
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8398-401. PubMed ID: 26012895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible generation of coacervate droplets in an enzymatic network.
    Nakashima KK; Baaij JF; Spruijt E
    Soft Matter; 2018 Jan; 14(3):361-367. PubMed ID: 29199758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.
    Williams DS; Patil AJ; Mann S
    Small; 2014 May; 10(9):1830-40. PubMed ID: 24515342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; ():. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective amide bond formation in redox-active coacervate protocells.
    Wang J; Abbas M; Wang J; Spruijt E
    Nat Commun; 2023 Dec; 14(1):8492. PubMed ID: 38129391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Positioning and Chemical Coupling in Coacervate-in-Proteinosome Protocells.
    Booth R; Qiao Y; Li M; Mann S
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9120-9124. PubMed ID: 31034692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction.
    Perin GB; Moreno S; Zhou Y; Günther M; Boye S; Voit B; Felisberti MI; Appelhans D
    Biomacromolecules; 2023 Dec; 24(12):5807-5822. PubMed ID: 37984848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling.
    Fraccia TP; Martin N
    Nat Commun; 2023 May; 14(1):2606. PubMed ID: 37160869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets.
    Martin N; Tian L; Spencer D; Coutable-Pennarun A; Anderson JLR; Mann S
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14594-14598. PubMed ID: 31408263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics.
    Bergmann AM; Donau C; Späth F; Jahnke K; Göpfrich K; Boekhoven J
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202203928. PubMed ID: 35657164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.