These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34155251)

  • 1. Physical reservoir computing with origami and its application to robotic crawling.
    Bhovad P; Li S
    Sci Rep; 2021 Jun; 11(1):13002. PubMed ID: 34155251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots.
    Sun Y; Li D; Wu M; Yang Y; Su J; Wong T; Xu K; Li Y; Li L; Yu X; Yu J
    Microsyst Nanoeng; 2022; 8():37. PubMed ID: 35450326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonessentiality of Reservoir's Fading Memory for Universality of Reservoir Computing.
    Sugiura S; Ariizumi R; Asai T; Azuma SI
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37585331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami Polyhedra-Based Soft Multicellular Robots.
    Hu F; Zhang C
    Soft Robot; 2024 Apr; 11(2):244-259. PubMed ID: 37870759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice-and-Plate Model: Mechanics Modeling of Physical Origami Robots.
    Zhang H; Paik J
    Soft Robot; 2023 Feb; 10(1):149-158. PubMed ID: 35714351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm.
    Nakajima K; Hauser H; Kang R; Guglielmino E; Caldwell DG; Pfeifer R
    Front Comput Neurosci; 2013; 7():91. PubMed ID: 23847526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-triangles cylindrical origami and inspired metamaterials with tunable stiffness and stretchable robotic arm.
    Wang X; Qu H; Li X; Kuang Y; Wang H; Guo S
    PNAS Nexus; 2023 Apr; 2(4):pgad098. PubMed ID: 37065617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the phase sensitivity of laser-based optical reservoir computing systems.
    Nguimdo RM; Verschaffelt G; Danckaert J; Van der Sande G
    Opt Express; 2016 Jan; 24(2):1238-52. PubMed ID: 26832506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse Origami Design Model for Soft Robotic Development.
    Hu Q; Li J; Tao J; Dong E; Sun D
    Soft Robot; 2024 Feb; 11(1):131-139. PubMed ID: 37616548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics.
    Hu F; Wang W; Cheng J; Bao Y
    Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden symmetries generate rigid folding mechanisms in periodic origami.
    McInerney J; Chen BG; Theran L; Santangelo CD; Rocklin DZ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30252-30259. PubMed ID: 33199647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms.
    Kaufmann J; Bhovad P; Li S
    Soft Robot; 2022 Apr; 9(2):212-223. PubMed ID: 33769099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Reservoir Computing With Fluctuations in Linear Networks.
    Nokkala J; Martinez-Pena R; Zambrini R; Soriano MC
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2664-2675. PubMed ID: 34460401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostatic plasticity for single node delay-coupled reservoir computing.
    Toutounji H; Schumacher J; Pipa G
    Neural Comput; 2015 Jun; 27(6):1159-85. PubMed ID: 25826022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origami-Enhanced Mechanical Properties for Worm-Like Robot.
    Liu Z; He Z; Hu X; Sun Z; Ge Q; Xu J; Fang H
    Soft Robot; 2024 Jul; ():. PubMed ID: 38963793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics.
    Vidamour IT; Ellis MOA; Griffin D; Venkat G; Swindells C; Dawidek RWS; Broomhall TJ; Steinke NJ; Cooper JFK; Maccherozzi F; Dhesi SS; Stepney S; Vasilaki E; Allwood DA; Hayward TJ
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35940063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-adaptive physical reservoir computing.
    Lee O; Wei T; Stenning KD; Gartside JC; Prestwood D; Seki S; Aqeel A; Karube K; Kanazawa N; Taguchi Y; Back C; Tokura Y; Branford WR; Kurebayashi H
    Nat Mater; 2024 Jan; 23(1):79-87. PubMed ID: 37957266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting oscillatory dynamics of delay systems for reservoir computing.
    Goldmann M; Fischer I; Mirasso CR; C Soriano M
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37748487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applied origami. Using origami design principles to fold reprogrammable mechanical metamaterials.
    Silverberg JL; Evans AA; McLeod L; Hayward RC; Hull T; Santangelo CD; Cohen I
    Science; 2014 Aug; 345(6197):647-50. PubMed ID: 25104381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.