BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34155583)

  • 1. Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid.
    Flores-León M; Alcaraz N; Pérez-Domínguez M; Torres-Arciga K; Rebollar-Vega R; De la Rosa-Velázquez IA; Arriaga-Canon C; Herrera LA; Arias C; González-Barrios R
    Mol Neurobiol; 2021 Sep; 58(9):4639-4651. PubMed ID: 34155583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro.
    Voss U; Sand E; Olde B; Ekblad E
    PLoS One; 2013; 8(12):e81413. PubMed ID: 24312551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice.
    Cheng L; Yu Y; Szabo A; Wu Y; Wang H; Camer D; Huang XF
    J Nutr Biochem; 2015 May; 26(5):541-8. PubMed ID: 25724108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells.
    Sánchez-Alegría K; Bastián-Eugenio CE; Vaca L; Arias C
    FASEB J; 2021 Jul; 35(7):e21712. PubMed ID: 34110637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitic Acid-Induced NAD
    Flores-León M; Pérez-Domínguez M; González-Barrios R; Arias C
    Neurochem Res; 2019 Jul; 44(7):1745-1754. PubMed ID: 31073968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprotective effects of vitamin D on high fat diet- and palmitic acid-induced enteric neuronal loss in mice.
    Larsson S; Voss U
    BMC Gastroenterol; 2018 Nov; 18(1):175. PubMed ID: 30463517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.
    Duffy CM; Yuan C; Wisdorf LE; Billington CJ; Kotz CM; Nixon JP; Butterick TA
    Neurosci Lett; 2015 Oct; 606():140-4. PubMed ID: 26306651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lycopene suppresses palmitic acid-induced brain oxidative stress, hyperactivity of some neuro-signalling enzymes, and inflammation in female Wistar rat.
    Ugbaja RN; James AS; Ugwor EI; Akamo AJ; Thomas FC; Kosoko AM
    Sci Rep; 2021 Jul; 11(1):15038. PubMed ID: 34294819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrroloquinoline Quinone Modifies Lipid Profile, but Not Insulin Sensitivity, of Palmitic Acid-Treated L6 Myotubes.
    Supruniuk E; Mikłosz A; Chabowski A
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.
    Yi HW; Ma YX; Wang XN; Wang CF; Lu J; Cao W; Wu XD
    Chin J Nat Med; 2015 Apr; 13(4):250-6. PubMed ID: 25908621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal Growth Factor Modulates Palmitic Acid-Induced Inflammatory and Lipid Signaling Pathways in SZ95 Sebocytes.
    Törőcsik D; Fazekas F; Póliska S; Gregus A; Janka EA; Dull K; Szegedi A; Zouboulis CC; Kovács D
    Front Immunol; 2021; 12():600017. PubMed ID: 34025636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Neuroinflammatory and Neurotoxic Potential of Palmitic Acid Is Mitigated by Oleic Acid in Microglial Cells and Microglial-Neuronal Co-cultures.
    Beaulieu J; Costa G; Renaud J; Moitié A; Glémet H; Sergi D; Martinoli MG
    Mol Neurobiol; 2021 Jun; 58(6):3000-3014. PubMed ID: 33604780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: The role of mTOR activation and mitochondrial ROS production.
    Calvo-Ochoa E; Sánchez-Alegría K; Gómez-Inclán C; Ferrera P; Arias C
    Neurochem Int; 2017 Nov; 110():75-83. PubMed ID: 28919254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids.
    Lam YY; Hatzinikolas G; Weir JM; Janovská A; McAinch AJ; Game P; Meikle PJ; Wittert GA
    Biochim Biophys Acta; 2011; 1811(7-8):468-75. PubMed ID: 21570480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitic Acid Upregulates Type I Interferon-Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes.
    Rojas-Cruz AF; Martín-Jiménez CA; González J; González-Giraldo Y; Pinzón AM; Barreto GE; Aristizábal-Pachón AF
    Mol Neurobiol; 2023 Aug; 60(8):4842-4854. PubMed ID: 37184765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of n-6 polyunsaturated fatty acid deprivation on the inflammatory gene response to lipopolysaccharide in the mouse hippocampus.
    Alashmali SM; Lin L; Trépanier MO; Cisbani G; Bazinet RP
    J Neuroinflammation; 2019 Nov; 16(1):237. PubMed ID: 31775778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation.
    Duffy CM; Xu H; Nixon JP; Bernlohr DA; Butterick TA
    Mol Cell Neurosci; 2017 Apr; 80():52-57. PubMed ID: 28214555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-fat diet feeding and palmitic acid increase CRC growth in β2AR-dependent manner.
    Fatima S; Hu X; Huang C; Zhang W; Cai J; Huang M; Gong RH; Chen M; Ho AHM; Su T; Wong HLX; Bian Z; Kwan HY
    Cell Death Dis; 2019 Sep; 10(10):711. PubMed ID: 31558710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice.
    Wang L; Xu F; Song Z; Han D; Zhang J; Chen L; Na L
    Lipids Health Dis; 2020 Jul; 19(1):172. PubMed ID: 32693810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of fatty acids on autophagy in NPY neurones.
    Reginato A; Siqueira BP; Miyamoto JÉ; Portovedo M; Costa SO; de Fante T; Rodrigues HG; Ignácio-Souza LM; Torsoni MA; Torsoni AS; Le Stunff H; Belsham DD; Milanski M
    J Neuroendocrinol; 2020 Oct; 32(10):e12900. PubMed ID: 33040385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.