These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34155626)
41. Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy. Vergnes M; Marescaux C; Lannes B; Depaulis A; Micheletti G; Warter JM Epilepsy Res; 1989; 4(1):8-13. PubMed ID: 2502389 [TBL] [Abstract][Full Text] [Related]
42. Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Wang S; Wang IZ; Bulacio JC; Mosher JC; Gonzalez-Martinez J; Alexopoulos AV; Najm IM; So NK Epilepsia; 2013 Feb; 54(2):370-6. PubMed ID: 23106394 [TBL] [Abstract][Full Text] [Related]
43. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Kharatishvili I; Immonen R; Gröhn O; Pitkänen A Brain; 2007 Dec; 130(Pt 12):3155-68. PubMed ID: 18055492 [TBL] [Abstract][Full Text] [Related]
44. Early Appearance and Spread of Fast Ripples in the Hippocampus in a Model of Cortical Traumatic Brain Injury. Ortiz F; Zapfe WPK; Draguhn A; Gutiérrez R J Neurosci; 2018 Oct; 38(42):9034-9046. PubMed ID: 30190413 [TBL] [Abstract][Full Text] [Related]
46. Spike-wave seizures, slow-wave sleep EEG and morphology of substantia nigra pars compacta in WAG/Rij rats with genetic predisposition to absence epilepsy. Sitnikova E; Rutskova EM; Tsvetaeva D; Raevsky VV Brain Res Bull; 2021 Sep; 174():63-71. PubMed ID: 34090934 [TBL] [Abstract][Full Text] [Related]
47. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Bragin A; Wilson CL; Engel J Epilepsia; 2000; 41 Suppl 6():S144-52. PubMed ID: 10999536 [TBL] [Abstract][Full Text] [Related]
48. Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures. Bragin A; Engel J; Wilson CL; Fried I; Mathern GW Epilepsia; 1999 Feb; 40(2):127-37. PubMed ID: 9952257 [TBL] [Abstract][Full Text] [Related]
49. On the putative contribution of GABA(B) receptors to the electrical events occurring during spontaneous spike and wave discharges. Charpier S; Leresche N; Deniau JM; Mahon S; Hughes SW; Crunelli V Neuropharmacology; 1999 Nov; 38(11):1699-706. PubMed ID: 10587086 [TBL] [Abstract][Full Text] [Related]
51. Early intervention with levetiracetam prevents the development of cortical hyperexcitability and spontaneous epileptiform activity in two models of neurotrauma in rats. Yang L; Afroz S; Valsamis HA; Michelson HB; Goodman JH; Ling DSF Exp Neurol; 2021 Mar; 337():113571. PubMed ID: 33340499 [TBL] [Abstract][Full Text] [Related]
52. Dynamics of sensorimotor cortex activation during absence and myoclonic seizures in a mouse model of juvenile myoclonic epilepsy. Ding L; Gallagher MJ Epilepsia; 2016 Oct; 57(10):1568-1580. PubMed ID: 27573707 [TBL] [Abstract][Full Text] [Related]
53. Parvalbumin immunoreactivity and expression of GABAA receptor subunits in the thalamus after experimental TBI. Huusko N; Pitkänen A Neuroscience; 2014 May; 267():30-45. PubMed ID: 24607347 [TBL] [Abstract][Full Text] [Related]
54. Association of the severity of cortical damage with the occurrence of spontaneous seizures and hyperexcitability in an animal model of posttraumatic epilepsy. Kharatishvili I; Pitkänen A Epilepsy Res; 2010 Jun; 90(1-2):47-59. PubMed ID: 20435440 [TBL] [Abstract][Full Text] [Related]
55. Anxiety and locomotion in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): inclusion of Wistar rats as a second control. Marques-Carneiro JE; Faure JB; Cosquer B; Koning E; Ferrandon A; de Vasconcelos AP; Cassel JC; Nehlig A Epilepsia; 2014 Sep; 55(9):1460-8. PubMed ID: 25059093 [TBL] [Abstract][Full Text] [Related]
56. Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy. Vergnes M; Marescaux C; Depaulis A Brain Res; 1990 Jul; 523(1):87-91. PubMed ID: 2207693 [TBL] [Abstract][Full Text] [Related]
57. A potential model of pediatric posttraumatic epilepsy. Statler KD; Scheerlinck P; Pouliot W; Hamilton M; White HS; Dudek FE Epilepsy Res; 2009 Oct; 86(2-3):221-3. PubMed ID: 19520549 [TBL] [Abstract][Full Text] [Related]
58. Hippocampal neuropeptide Y protein expression following controlled cortical impact and posttraumatic epilepsy. Sun Z; Liu S; Kharlamov EA; Miller ER; Kelly KM Epilepsy Behav; 2018 Oct; 87():188-194. PubMed ID: 30146352 [TBL] [Abstract][Full Text] [Related]
59. Effect of caffeine and adenosine receptor ligands on the expression of spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Germé K; Faure JB; Koning E; Nehlig A Epilepsy Res; 2015 Feb; 110():105-14. PubMed ID: 25616462 [TBL] [Abstract][Full Text] [Related]
60. Posttraumatic seizures and epilepsy in adult rats after controlled cortical impact. Kelly KM; Miller ER; Lepsveridze E; Kharlamov EA; Mchedlishvili Z Epilepsy Res; 2015 Nov; 117():104-16. PubMed ID: 26432760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]