BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34155700)

  • 21. Flow Synthesis of Gigantic Porphyrinic Cages: Facile Synthesis of P
    Lee H; Joo JU; Dhamija A; Gunnam A; Koo J; Giri P; Ho Ko Y; Hwang IC; Kim DP; Kim K
    Chemistry; 2023 Jun; 29(34):e202300760. PubMed ID: 37060215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Palladium(II)-Based Self-Assembled Heteroleptic Coordination Architectures: A Growing Family.
    Bardhan D; Chand DK
    Chemistry; 2019 Sep; 25(53):12241-12269. PubMed ID: 31158303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient DNA-Based Nanostructures Controlled by Redox Inputs.
    Del Grosso E; Prins LJ; Ricci F
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13238-13245. PubMed ID: 32339410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supramolecular Porphyrin Nanostructures Based on Coordination-Driven Self-Assembly and Their Visible Light Catalytic Degradation of Methylene Blue Dye.
    Shee NK; Kim MK; Kim HJ
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33266509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and self-assembly of NCN-pincer Pd-complex-bound norvalines.
    Ogata K; Sasano D; Yokoi T; Isozaki K; Yoshida R; Takenaka T; Seike H; Ogawa T; Kurata H; Yasuda N; Takaya H; Nakamura M
    Chemistry; 2013 Sep; 19(37):12356-75. PubMed ID: 23907820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry.
    Liu Y; Liu FZ; Li S; Liu H; Yan K
    Chemistry; 2023 Dec; 29(67):e202302563. PubMed ID: 37670119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clathrochelate Metalloligands in Supramolecular Chemistry and Materials Science.
    Jansze SM; Severin K
    Acc Chem Res; 2018 Sep; 51(9):2139-2147. PubMed ID: 30156828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation.
    Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L
    J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From ring-in-ring to sphere-in-sphere: self-assembly of discrete 2D and 3D architectures with increasing stability.
    Sun B; Wang M; Lou Z; Huang M; Xu C; Li X; Chen LJ; Yu Y; Davis GL; Xu B; Yang HB; Li X
    J Am Chem Soc; 2015 Feb; 137(4):1556-64. PubMed ID: 25574776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and self-assembly of wide and robust coordination cages.
    Pirondini L; Bertolini F; Cantadori B; Ugozzoli F; Massera C; Dalcanale E
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):4911-5. PubMed ID: 11943856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly processes of octahedron-shaped Pd
    Komine S; Tateishi T; Kojima T; Nakagawa H; Hayashi Y; Takahashi S; Hiraoka S
    Dalton Trans; 2019 Mar; 48(13):4139-4148. PubMed ID: 30785436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Analysis of Self-Assembly Process of a Pd
    Kai S; Martí-Centelles V; Sakuma Y; Mashiko T; Kojima T; Nagashima U; Tachikawa M; Lusby PJ; Hiraoka S
    Chemistry; 2018 Jan; 24(3):663-671. PubMed ID: 29044811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?
    Imaoka T; Kitazawa H; Chun WJ; Omura S; Albrecht K; Yamamoto K
    J Am Chem Soc; 2013 Sep; 135(35):13089-95. PubMed ID: 23902457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Time Visual Monitoring of Kinetically Controlled Self-Assembly.
    Huang Z; Jiang T; Wang J; Ma X; Tian H
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2855-2860. PubMed ID: 33098375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting the "Blue Box": Self-Assembly Strategies for the Construction of Multipurpose Polycationic Cyclophanes.
    Neira I; Blanco-Gómez A; Quintela JM; García MD; Peinador C
    Acc Chem Res; 2020 Oct; 53(10):2336-2346. PubMed ID: 32915539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal induced self-assembly of designed V-shape protein into 2D wavy supramolecular nanostructure.
    Qiao SP; Lang C; Wang RD; Li XM; Yan TF; Pan TZ; Zhao LL; Fan XT; Zhang X; Hou CX; Luo Q; Xu JY; Liu JQ
    Nanoscale; 2016 Jan; 8(1):333-41. PubMed ID: 26612683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetically "locked" metallomacrocycle.
    Nishino T; Yamada Y; Akine S; Sugimoto K; Tanaka K
    Dalton Trans; 2016 Mar; 45(9):3831-7. PubMed ID: 26820843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic Formation of Coordination-Based Self-Assemblies by Halide Impurities.
    Bobylev EO; de Bruin B; Reek JNH
    Inorg Chem; 2021 Aug; 60(16):12498-12505. PubMed ID: 34327986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes.
    Robinson ME; Nazemi A; Lunn DJ; Hayward DW; Boott CE; Hsiao MS; Harniman RL; Davis SA; Whittell GR; Richardson RM; De Cola L; Manners I
    ACS Nano; 2017 Sep; 11(9):9162-9175. PubMed ID: 28836765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.