These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34156062)

  • 1. Strategies for inclusion of growth factors into 3D printed bone grafts.
    Longoni A; Li J; Lindberg GCJ; Rnjak-Kovacina J; Wise LM; Hooper GJ; Woodfield TBF; Kieser DC; Lim KS
    Essays Biochem; 2021 Aug; 65(3):569-585. PubMed ID: 34156062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration.
    Ansari MAA; Golebiowska AA; Dash M; Kumar P; Jain PK; Nukavarapu SP; Ramakrishna S; Nanda HS
    Biomater Sci; 2022 May; 10(11):2789-2816. PubMed ID: 35510605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan-based 3D-printed scaffolds for bone tissue engineering.
    Yadav LR; Chandran SV; Lavanya K; Selvamurugan N
    Int J Biol Macromol; 2021 Jul; 183():1925-1938. PubMed ID: 34097956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds.
    Vidal L; Kampleitner C; Krissian S; Brennan MÁ; Hoffmann O; Raymond Y; Maazouz Y; Ginebra MP; Rosset P; Layrolle P
    Sci Rep; 2020 Apr; 10(1):7068. PubMed ID: 32341459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis.
    Hwang SH; Kim J; Heo C; Yoon J; Kim H; Lee SH; Park HW; Heo MS; Moon HE; Kim C; Paek SH; Jang J
    Acta Biomater; 2023 Feb; 157():137-148. PubMed ID: 36460287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of inorganic-biopolymer composites for bone regeneration.
    van der Heide D; Cidonio G; Stoddart MJ; D'Este M
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36007496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.