These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34156100)
1. A fragment-based approach to discovery of Receptor for Advanced Glycation End products inhibitors. Kozlyuk N; Gilston BA; Salay LE; Gogliotti RD; Christov PP; Kim K; Ovee M; Waterson AG; Chazin WJ Proteins; 2021 Nov; 89(11):1399-1412. PubMed ID: 34156100 [TBL] [Abstract][Full Text] [Related]
2. Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast. Chiou JW; Fu B; Chou RH; Yu C PLoS One; 2016; 11(9):e0162000. PubMed ID: 27598566 [TBL] [Abstract][Full Text] [Related]
3. Blocking the interface region amongst S100A6 and RAGE V domain via S100B protein. Sung HY; Dowarha D; Chou RH; Yu C Biochem Biophys Res Commun; 2020 Dec; 533(3):332-337. PubMed ID: 32958253 [TBL] [Abstract][Full Text] [Related]
4. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE). Degani G; Altomare AA; Colzani M; Martino C; Mazzolari A; Fritz G; Vistoli G; Popolo L; Aldini G Redox Biol; 2017 Apr; 11():275-285. PubMed ID: 28013188 [TBL] [Abstract][Full Text] [Related]
5. The Trp triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding. Indurthi VSK; Jensen JL; Leclerc E; Sinha S; Colbert CL; Vetter SW Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31912881 [TBL] [Abstract][Full Text] [Related]
6. Generation, biochemical characterizations and validation of potent nanobodies derived from alpaca specific for human receptor of advanced glycation end product. Mohammed A; Zeng W; Mengist HM; Kombe Kombe AJ; Ou H; Yang Y; Dan Z; Xu Z; Ma H; Jin T Biochem Biophys Res Commun; 2021 Dec; 581():38-45. PubMed ID: 34653677 [TBL] [Abstract][Full Text] [Related]
7. Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor. Li Y; Zhang Z; Phoo WW; Loh YR; Li R; Yang HY; Jansson AE; Hill J; Keller TH; Nacro K; Luo D; Kang C Structure; 2018 Apr; 26(4):555-564.e3. PubMed ID: 29526431 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. Yatime L; Andersen GR FEBS J; 2013 Dec; 280(24):6556-68. PubMed ID: 24119142 [TBL] [Abstract][Full Text] [Related]
9. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. Bongarzone S; Savickas V; Luzi F; Gee AD J Med Chem; 2017 Sep; 60(17):7213-7232. PubMed ID: 28482155 [TBL] [Abstract][Full Text] [Related]
10. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. Park H; Adsit FG; Boyington JC J Biol Chem; 2010 Dec; 285(52):40762-70. PubMed ID: 20943659 [TBL] [Abstract][Full Text] [Related]
11. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Kim HJ; Jeong MS; Jang SB Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34199060 [TBL] [Abstract][Full Text] [Related]
12. Biophysical characterization of the ETV6 PNT domain polymerization interfaces. Gerak CAN; Cho SY; Kolesnikov M; Okon M; Murphy MEP; Sessions RB; Roberge M; McIntosh LP J Biol Chem; 2021; 296():100284. PubMed ID: 33450226 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). Xie J; Reverdatto S; Frolov A; Hoffmann R; Burz DS; Shekhtman A J Biol Chem; 2008 Oct; 283(40):27255-69. PubMed ID: 18667420 [TBL] [Abstract][Full Text] [Related]
14. Discovery and characterization of bromodomain 2-specific inhibitors of BRDT. Yu Z; Ku AF; Anglin JL; Sharma R; Ucisik MN; Faver JC; Li F; Nyshadham P; Simmons N; Sharma KL; Nagarajan S; Riehle K; Kaur G; Sankaran B; Storl-Desmond M; Palmer SS; Young DW; Kim C; Matzuk MM Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33637650 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of RAGE Axis Signaling: A Pharmacological Challenge. Rojas A; Morales M; Gonzalez I; Araya P Curr Drug Targets; 2019; 20(3):340-346. PubMed ID: 30124149 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into the binding of the human receptor for advanced glycation end products (RAGE) by S100B, as revealed by an S100B-RAGE-derived peptide complex. Jensen JL; Indurthi VS; Neau DB; Vetter SW; Colbert CL Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1176-83. PubMed ID: 25945582 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of carboxypeptidase T complexes with transition-state analogs. Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130 [No Abstract] [Full Text] [Related]
18. Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation. Huang YK; Chou RH; Yu C J Biol Chem; 2016 Jul; 291(27):14300-14310. PubMed ID: 27226584 [TBL] [Abstract][Full Text] [Related]
19. The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein. Vergara R; Romero-Romero S; Velázquez-López I; Espinoza-Pérez G; Rodríguez-Hernández A; Pulido NO; Sosa-Peinado A; Rodríguez-Romero A; Fernández-Velasco DA FEBS J; 2020 Feb; 287(4):763-782. PubMed ID: 31348608 [TBL] [Abstract][Full Text] [Related]