BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34156100)

  • 1. A fragment-based approach to discovery of Receptor for Advanced Glycation End products inhibitors.
    Kozlyuk N; Gilston BA; Salay LE; Gogliotti RD; Christov PP; Kim K; Ovee M; Waterson AG; Chazin WJ
    Proteins; 2021 Nov; 89(11):1399-1412. PubMed ID: 34156100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast.
    Chiou JW; Fu B; Chou RH; Yu C
    PLoS One; 2016; 11(9):e0162000. PubMed ID: 27598566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blocking the interface region amongst S100A6 and RAGE V domain via S100B protein.
    Sung HY; Dowarha D; Chou RH; Yu C
    Biochem Biophys Res Commun; 2020 Dec; 533(3):332-337. PubMed ID: 32958253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE).
    Degani G; Altomare AA; Colzani M; Martino C; Mazzolari A; Fritz G; Vistoli G; Popolo L; Aldini G
    Redox Biol; 2017 Apr; 11():275-285. PubMed ID: 28013188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Trp triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding.
    Indurthi VSK; Jensen JL; Leclerc E; Sinha S; Colbert CL; Vetter SW
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31912881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation, biochemical characterizations and validation of potent nanobodies derived from alpaca specific for human receptor of advanced glycation end product.
    Mohammed A; Zeng W; Mengist HM; Kombe Kombe AJ; Ou H; Yang Y; Dan Z; Xu Z; Ma H; Jin T
    Biochem Biophys Res Commun; 2021 Dec; 581():38-45. PubMed ID: 34653677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor.
    Li Y; Zhang Z; Phoo WW; Loh YR; Li R; Yang HY; Jansson AE; Hill J; Keller TH; Nacro K; Luo D; Kang C
    Structure; 2018 Apr; 26(4):555-564.e3. PubMed ID: 29526431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products.
    Yatime L; Andersen GR
    FEBS J; 2013 Dec; 280(24):6556-68. PubMed ID: 24119142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective.
    Bongarzone S; Savickas V; Luzi F; Gee AD
    J Med Chem; 2017 Sep; 60(17):7213-7232. PubMed ID: 28482155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding.
    Park H; Adsit FG; Boyington JC
    J Biol Chem; 2010 Dec; 285(52):40762-70. PubMed ID: 20943659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors.
    Kim HJ; Jeong MS; Jang SB
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34199060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical characterization of the ETV6 PNT domain polymerization interfaces.
    Gerak CAN; Cho SY; Kolesnikov M; Okon M; Murphy MEP; Sessions RB; Roberge M; McIntosh LP
    J Biol Chem; 2021; 296():100284. PubMed ID: 33450226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE).
    Xie J; Reverdatto S; Frolov A; Hoffmann R; Burz DS; Shekhtman A
    J Biol Chem; 2008 Oct; 283(40):27255-69. PubMed ID: 18667420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of RAGE Axis Signaling: A Pharmacological Challenge.
    Rojas A; Morales M; Gonzalez I; Araya P
    Curr Drug Targets; 2019; 20(3):340-346. PubMed ID: 30124149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and characterization of bromodomain 2-specific inhibitors of BRDT.
    Yu Z; Ku AF; Anglin JL; Sharma R; Ucisik MN; Faver JC; Li F; Nyshadham P; Simmons N; Sharma KL; Nagarajan S; Riehle K; Kaur G; Sankaran B; Storl-Desmond M; Palmer SS; Young DW; Kim C; Matzuk MM
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33637650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of carboxypeptidase T complexes with transition-state analogs.
    Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV
    J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130
    [No Abstract]   [Full Text] [Related]  

  • 17. The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein.
    Vergara R; Romero-Romero S; Velázquez-López I; Espinoza-Pérez G; Rodríguez-Hernández A; Pulido NO; Sosa-Peinado A; Rodríguez-Romero A; Fernández-Velasco DA
    FEBS J; 2020 Feb; 287(4):763-782. PubMed ID: 31348608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation.
    Huang YK; Chou RH; Yu C
    J Biol Chem; 2016 Jul; 291(27):14300-14310. PubMed ID: 27226584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Analysis of R1 and R2 Pyocin Receptor-Binding Fibers.
    Buth SA; Shneider MM; Scholl D; Leiman PG
    Viruses; 2018 Aug; 10(8):. PubMed ID: 30110933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression analysis of RAGE-S100A6 complex for target selection and the design of novel inhibitors for anticancer drug discovery.
    Faruqui T; Singh G; Khan S; Khan MS; Akhter Y
    J Cell Biochem; 2023 Feb; 124(2):205-220. PubMed ID: 36502516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.