These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34156124)

  • 41. Protein oligomer structure prediction using GALAXY in CASP14.
    Park T; Woo H; Yang J; Kwon S; Won J; Seok C
    Proteins; 2021 Dec; 89(12):1844-1851. PubMed ID: 34363243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CASP11 refinement experiments with ROSETTA.
    Park H; DiMaio F; Baker D
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):314-22. PubMed ID: 26205421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Significant Refinement of Protein Structure Models Using a Residue-Specific Force Field.
    Xun S; Jiang F; Wu YD
    J Chem Theory Comput; 2015 Apr; 11(4):1949-56. PubMed ID: 26574396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Consistent refinement of submitted models at CASP using a knowledge-based potential.
    Chopra G; Kalisman N; Levitt M
    Proteins; 2010 Sep; 78(12):2668-78. PubMed ID: 20589633
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep Learning-Based Advances in Protein Structure Prediction.
    Pakhrin SC; Shrestha B; Adhikari B; Kc DB
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34074028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-accuracy protein structure prediction in CASP14.
    Pereira J; Simpkin AJ; Hartmann MD; Rigden DJ; Keegan RM; Lupas AN
    Proteins; 2021 Dec; 89(12):1687-1699. PubMed ID: 34218458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of unrestrained replica-exchange simulations using dynamic walkers in temperature space for protein structure refinement.
    Olson MA; Lee MS
    PLoS One; 2014; 9(5):e96638. PubMed ID: 24848767
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement.
    Xu D; Zhang J; Roy A; Zhang Y
    Proteins; 2011; 79 Suppl 10(Suppl 10):147-60. PubMed ID: 22069036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15.
    Oda T
    Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The breakthrough in protein structure prediction.
    Lupas AN; Pereira J; Alva V; Merino F; Coles M; Hartmann MD
    Biochem J; 2021 May; 478(10):1885-1890. PubMed ID: 34029366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling.
    Zhang J; Liang Y; Zhang Y
    Structure; 2011 Dec; 19(12):1784-95. PubMed ID: 22153501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics.
    Kumar A; Campitelli P; Thorpe MF; Ozkan SB
    Proteins; 2015 Dec; 83(12):2279-92. PubMed ID: 26476100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of the CASP14 assembly predictions.
    Ozden B; Kryshtafovych A; Karaca E
    Proteins; 2021 Dec; 89(12):1787-1799. PubMed ID: 34337786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of protein structure refinement in CASP9.
    MacCallum JL; PĂ©rez A; Schnieders MJ; Hua L; Jacobson MP; Dill KA
    Proteins; 2011; 79 Suppl 10(Suppl 10):74-90. PubMed ID: 22069034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structures, dynamics, complexes, and functions: From classic computation to artificial intelligence.
    Frasnetti E; Magni A; Castelli M; Serapian SA; Moroni E; Colombo G
    Curr Opin Struct Biol; 2024 Aug; 87():102835. PubMed ID: 38744148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction.
    Zhou X; Peng C; Zheng W; Li Y; Zhang G; Zhang Y
    Nucleic Acids Res; 2022 Jul; 50(W1):W235-W245. PubMed ID: 35536281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.
    Ozden B; Kryshtafovych A; Karaca E
    Proteins; 2023 Dec; 91(12):1636-1657. PubMed ID: 37861057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?
    Gu S; Shen C; Yu J; Zhao H; Liu H; Liu L; Sheng R; Xu L; Wang Z; Hou T; Kang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure refinement of membrane proteins via molecular dynamics simulations.
    Dutagaci B; Heo L; Feig M
    Proteins; 2018 Jul; 86(7):738-750. PubMed ID: 29675899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.