These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 34156149)
1. Super-resolved local recruitment of CLDN5 to filtration slits implicates a direct relationship with podocyte foot process effacement. Tesch F; Siegerist F; Hay E; Artelt N; Daniel C; Amann K; Zimmermann U; Kavvadas P; Grisk O; Chadjichristos C; Endlich K; Chatziantoniou C; Endlich N J Cell Mol Med; 2021 Aug; 25(16):7631-7641. PubMed ID: 34156149 [TBL] [Abstract][Full Text] [Related]
2. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. George B; Verma R; Soofi AA; Garg P; Zhang J; Park TJ; Giardino L; Ryzhova L; Johnstone DB; Wong H; Nihalani D; Salant DJ; Hanks SK; Curran T; Rastaldi MP; Holzman LB J Clin Invest; 2012 Feb; 122(2):674-92. PubMed ID: 22251701 [TBL] [Abstract][Full Text] [Related]
3. Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. Verma R; Venkatareddy M; Kalinowski A; Li T; Kukla J; Mollin A; Cara-Fuentes G; Patel SR; Garg P PLoS One; 2018; 13(6):e0198013. PubMed ID: 29924795 [TBL] [Abstract][Full Text] [Related]
4. [Structure and function of the glomerular filtration barrier]. Musiał K; Zwolińska D Pol Merkur Lekarski; 2005 Mar; 18(105):317-20. PubMed ID: 15997642 [TBL] [Abstract][Full Text] [Related]
5. Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury. Verma R; Venkatareddy M; Kalinowski A; Patel SR; Salant DJ; Garg P Mol Cell Biol; 2016 Feb; 36(4):596-614. PubMed ID: 26644409 [TBL] [Abstract][Full Text] [Related]
7. Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot Process Structure. Pisarek-Horowitz A; Fan X; Kumar S; Rasouly HM; Sharma R; Chen H; Coser K; Bluette CT; Hirenallur-Shanthappa D; Anderson SR; Yang H; Beck LH; Bonegio RG; Henderson JM; Berasi SP; Salant DJ; Lu W Am J Pathol; 2020 Apr; 190(4):799-816. PubMed ID: 32220420 [TBL] [Abstract][Full Text] [Related]
8. Assessment of urinary angiotensinogen as a marker of podocyte injury in proteinuric nephropathies. Eriguchi M; Yotsueda R; Torisu K; Kawai Y; Hasegawa S; Tanaka S; Noguchi H; Masutani K; Kitazono T; Tsuruya K Am J Physiol Renal Physiol; 2016 Feb; 310(4):F322-33. PubMed ID: 26632605 [TBL] [Abstract][Full Text] [Related]
9. Prevalence of CD44-positive glomerular parietal epithelial cells reflects podocyte injury in adriamycin nephropathy. Okamoto T; Sasaki S; Yamazaki T; Sato Y; Ito H; Ariga T Nephron Exp Nephrol; 2013; 124(3-4):11-8. PubMed ID: 24401840 [TBL] [Abstract][Full Text] [Related]
10. In situ evaluation of podocytes in patients with focal segmental glomerulosclerosis and minimal change disease. da Silva CA; Monteiro MLGDR; Araújo LS; Urzedo MG; Rocha LB; Dos Reis MA; Machado JR PLoS One; 2020; 15(11):e0241745. PubMed ID: 33147279 [TBL] [Abstract][Full Text] [Related]
11. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Sonneveld R; Ferrè S; Hoenderop JG; Dijkman HB; Berden JH; Bindels RJ; Wetzels JF; van der Vlag J; Nijenhuis T Am J Pathol; 2013 Apr; 182(4):1196-204. PubMed ID: 23385000 [TBL] [Abstract][Full Text] [Related]
12. Epithelial cell foot process effacement in podocytes in focal and segmental glomerulosclerosis: a quantitative analysis. Kfoury H Ultrastruct Pathol; 2014 Oct; 38(5):303-8. PubMed ID: 24956069 [TBL] [Abstract][Full Text] [Related]
13. Podocyte expression of nonmuscle myosin heavy chain-IIA decreases in idiopathic nephrotic syndrome, especially in focal segmental glomerulosclerosis. Miura K; Kurihara H; Horita S; Chikamoto H; Hattori M; Harita Y; Tsurumi H; Kajiho Y; Sawada Y; Sasaki S; Igarashi T; Kunishima S; Sekine T Nephrol Dial Transplant; 2013 Dec; 28(12):2993-3003. PubMed ID: 24042022 [TBL] [Abstract][Full Text] [Related]
14. AMPK mediates regulation of glomerular volume and podocyte survival. Banu K; Lin Q; Basgen JM; Planoutene M; Wei C; Reghuvaran AC; Tian X; Shi H; Garzon F; Garzia A; Chun N; Cumpelik A; Santeusanio AD; Zhang W; Das B; Salem F; Li L; Ishibe S; Cantley LG; Kaufman L; Lemley KV; Ni Z; He JC; Murphy B; Menon MC JCI Insight; 2021 Oct; 6(19):. PubMed ID: 34473647 [TBL] [Abstract][Full Text] [Related]
15. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. Rogg M; Maier JI; Dotzauer R; Artelt N; Kretz O; Helmstädter M; Abed A; Sammarco A; Sigle A; Sellung D; Dinse P; Reiche K; Yasuda-Yamahara M; Biniossek ML; Walz G; Werner M; Endlich N; Schilling O; Huber TB; Schell C J Am Soc Nephrol; 2021 Mar; 32(3):563-579. PubMed ID: 33514561 [TBL] [Abstract][Full Text] [Related]
16. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Deegens JK; Dijkman HB; Borm GF; Steenbergen EJ; van den Berg JG; Weening JJ; Wetzels JF Kidney Int; 2008 Dec; 74(12):1568-76. PubMed ID: 18813290 [TBL] [Abstract][Full Text] [Related]
17. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Roselli S; Heidet L; Sich M; Henger A; Kretzler M; Gubler MC; Antignac C Mol Cell Biol; 2004 Jan; 24(2):550-60. PubMed ID: 14701729 [TBL] [Abstract][Full Text] [Related]
18. Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Subramanian B; Sun H; Yan P; Charoonratana VT; Higgs HN; Wang F; Lai KV; Valenzuela DM; Brown EJ; Schlöndorff JS; Pollak MR Kidney Int; 2016 Aug; 90(2):363-372. PubMed ID: 27350175 [TBL] [Abstract][Full Text] [Related]
19. Genetic podocyte lineage reveals progressive podocytopenia with parietal cell hyperplasia in a murine model of cellular/collapsing focal segmental glomerulosclerosis. Suzuki T; Matsusaka T; Nakayama M; Asano T; Watanabe T; Ichikawa I; Nagata M Am J Pathol; 2009 May; 174(5):1675-82. PubMed ID: 19359523 [TBL] [Abstract][Full Text] [Related]