These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 34156733)
41. Transoral robotic surgery for head and neck malignancies: Imaging features in presurgical workup. Kwan BYM; Khan NM; de Almeida JR; Goldstein D; Paleri V; Forghani R; Yu E Head Neck; 2019 Nov; 41(11):4018-4025. PubMed ID: 31369177 [TBL] [Abstract][Full Text] [Related]
42. One-year outcomes for da Vinci single port robot for transoral robotic surgery. Van Abel KM; Yin LX; Price DL; Janus JR; Kasperbauer JL; Moore EJ Head Neck; 2020 Aug; 42(8):2077-2087. PubMed ID: 32190942 [TBL] [Abstract][Full Text] [Related]
43. A 9-year analysis of transoral laser microsurgery (TLM) of head and neck cancer on their potential suitability for transoral robotic surgery (TORS) for estimation of future TORS-specific caseload. von Scotti F; Kapsreiter M; Scherl C; Iro H; Bohr C Eur Rev Med Pharmacol Sci; 2018 May; 22(10):2949-2953. PubMed ID: 29863236 [TBL] [Abstract][Full Text] [Related]
44. Transoral robotic surgery for sellar tumors: first clinical study. Chauvet D; Hans S; Missistrano A; Rebours C; Bakkouri WE; Lot G J Neurosurg; 2017 Oct; 127(4):941-948. PubMed ID: 28009229 [TBL] [Abstract][Full Text] [Related]
45. Transoral robotic surgery in head neck cancer management. Kwong FN; Puvanendran M; Paleri V B-ENT; 2015; Suppl 24():7-13. PubMed ID: 26891526 [TBL] [Abstract][Full Text] [Related]
46. Transoral robotic surgery versus conventional surgery in treatment for squamous cell carcinoma of the upper aerodigestive tract. Hammoudi K; Pinlong E; Kim S; Bakhos D; Morinière S Head Neck; 2015 Sep; 37(9):1304-9. PubMed ID: 24816480 [TBL] [Abstract][Full Text] [Related]
47. Patterns of cervical node positivity, regional failure rates, and fistula rates for HPV+ oropharyngeal squamous cell carcinoma treated with transoral robotic surgery (TORS). Cannon RB; Houlton JJ; Patel S; Raju S; Noble A; Futran ND; Parvathaneni U; Méndez E Oral Oncol; 2018 Nov; 86():296-300. PubMed ID: 30409315 [TBL] [Abstract][Full Text] [Related]
48. A Next-Generation Single-Port Robotic Surgical System for Transoral Robotic Surgery: Results From Prospective Nonrandomized Clinical Trials. Holsinger FC; Magnuson JS; Weinstein GS; Chan JYK; Starmer HM; Tsang RKY; Wong EWY; Rassekh CH; Bedi N; Hong SSY; Orosco R; O'Malley BW; Moore EJ JAMA Otolaryngol Head Neck Surg; 2019 Nov; 145(11):1027-1034. PubMed ID: 31536129 [TBL] [Abstract][Full Text] [Related]
49. Potential Advantages of a Single-Port, Operator-Controlled Flexible Endoscope System for Transoral Surgery of the Larynx. Friedrich DT; Scheithauer MO; Greve J; Duvvuri U; Sommer F; Hoffmann TK; Schuler PJ Ann Otol Rhinol Laryngol; 2015 Aug; 124(8):655-62. PubMed ID: 25757631 [TBL] [Abstract][Full Text] [Related]
50. A new endoscopic surgical approach to the larynx, hypopharynx, and neck lymphatics: The robotic-assisted extended "Sistrunk" approach (RESA). Simon C; Holsinger FC; Rheinwald M; Kemper J; Lambercy K Head Neck; 2020 Sep; 42(9):2750-2756. PubMed ID: 32533578 [TBL] [Abstract][Full Text] [Related]
51. Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary treatment for head and neck cancer from a European perspective. Lörincz BB; Jowett N; Knecht R Head Neck; 2016 Apr; 38 Suppl 1():E2190-6. PubMed ID: 25833809 [TBL] [Abstract][Full Text] [Related]
52. Transoral robotic surgery (TORS) for benign pharyngeal lesions. Chan JY; Richmon JD Otolaryngol Clin North Am; 2014 Jun; 47(3):407-13. PubMed ID: 24882798 [TBL] [Abstract][Full Text] [Related]
53. Preliminary study of transoral robotic surgery for pharyngeal cancer in Japan. Fujiwara K; Fukuhara T; Kitano H; Fujii T; Koyama S; Yamasaki A; Kataoka H; Takeuchi H J Robot Surg; 2016 Mar; 10(1):11-7. PubMed ID: 26645072 [TBL] [Abstract][Full Text] [Related]
54. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Weinstein GS; O'Malley BW; Magnuson JS; Carroll WR; Olsen KD; Daio L; Moore EJ; Holsinger FC Laryngoscope; 2012 Aug; 122(8):1701-7. PubMed ID: 22752997 [TBL] [Abstract][Full Text] [Related]
55. Outcomes in surgically resectable oropharynx cancer treated with transoral robotic surgery versus definitive chemoradiation. Dhanireddy B; Burnett NP; Sanampudi S; Wooten CE; Slezak J; Shelton B; Shelton L; Shearer A; Arnold S; Kudrimoti M; Gal TJ Am J Otolaryngol; 2019; 40(5):673-677. PubMed ID: 31201038 [TBL] [Abstract][Full Text] [Related]
56. A shifting paradigm for patients with head and neck cancer: transoral robotic surgery (TORS). Bhayani MK; Holsinger FC; Lai SY Oncology (Williston Park); 2010 Oct; 24(11):1010-5. PubMed ID: 21155450 [TBL] [Abstract][Full Text] [Related]
57. Transoral Robotic Surgery and the Unknown Primary. Ofo E; Spiers H; Kim D; Duvvuri U ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):148-155. PubMed ID: 30419564 [TBL] [Abstract][Full Text] [Related]
58. Preclinical experience with a novel single-port platform for transoral surgery. Funk EK; Weissbrod P; Horgan S; Orosco RK; Califano JA Surg Endosc; 2021 Aug; 35(8):4857-4864. PubMed ID: 33712940 [TBL] [Abstract][Full Text] [Related]
59. Transoral robotic surgery base of tongue mucosectomy for head and neck cancer of unknown primary. Krishnan S; Connell J; Ofo E ANZ J Surg; 2017 Dec; 87(12):E281-E284. PubMed ID: 27860242 [TBL] [Abstract][Full Text] [Related]
60. Tolerability, toxicity, and temporal implications of transoral robotic surgery (TORS) on adjuvant radiation therapy in carcinoma of the head and neck. Carpenter TJ; Kann B; Buckstein MH; Ko EC; Bakst RL; Misiukiewicz KJ; Posner MR; Genden EM; Gupta V Ann Otol Rhinol Laryngol; 2014 Nov; 123(11):791-7. PubMed ID: 24847162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]