These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34156819)

  • 1. Insights into the Catalytic Mechanism of a Novel XynA and Structure-Based Engineering for Improving Bifunctional Activities.
    Xie W; Yu Q; Zhang R; Liu Y; Cao R; Wang S; Zhan R; Liu Z; Wang K; Wang C
    Biochemistry; 2021 Jul; 60(26):2071-2083. PubMed ID: 34156819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic
    Wang K; Cao R; Wang M; Lin Q; Zhan R; Xu H; Wang S
    Biotechnol Biofuels; 2019; 12():48. PubMed ID: 30899328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose.
    Chu Y; Tu T; Penttinen L; Xue X; Wang X; Yi Z; Gong L; Rouvinen J; Luo H; Hakulinen N; Yao B; Su X
    J Biol Chem; 2017 Nov; 292(47):19315-19327. PubMed ID: 28974575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities.
    Phakeenuya V; Ratanakhanokchai K; Kosugi A; Tachaapaikoon C
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2079-2096. PubMed ID: 31980921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens.
    Santos CR; Hoffmam ZB; de Matos Martins VP; Zanphorlin LM; de Paula Assis LH; Honorato RV; Lopes de Oliveira PS; Ruller R; Murakami MT
    J Biol Chem; 2014 Nov; 289(46):32186-32200. PubMed ID: 25266726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifunctional α-amylase BSGH13 from Bacillus subtilis BS-5 possessing endoglucanase and xylanase activities.
    Liu Z; Li J; Jie C; Wu B; Hao N
    Int J Biol Macromol; 2021 Feb; 171():166-176. PubMed ID: 33421464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, expression and characterization of glycoside hydrolase family 11 endoxylanase from Bacillus pumilus ARA.
    Qu W; Shao W
    Biotechnol Lett; 2011 Jul; 33(7):1407-16. PubMed ID: 21369910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum.
    Yuan SF; Wu TH; Lee HL; Hsieh HY; Lin WL; Yang B; Chang CK; Li Q; Gao J; Huang CH; Ho MC; Guo RT; Liang PH
    J Biol Chem; 2015 Feb; 290(9):5739-48. PubMed ID: 25575592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda.
    Liu X; Huang Z; Zhang X; Shao Z; Liu Z
    Extremophiles; 2014 Mar; 18(2):441-50. PubMed ID: 24464289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).
    Rizk M; Elleuche S; Antranikian G
    Biotechnol Lett; 2015 Jan; 37(1):139-45. PubMed ID: 25214221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24.
    Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY
    Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System.
    Fredriksen L; Stokke R; Jensen MS; Westereng B; Jameson JK; Steen IH; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference.
    Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency.
    Dong R; Liu X; Wang Y; Qin X; Wang X; Zhang H; Wang Y; Luo H; Yao B; Bai Y; Tu T
    Bioengineered; 2022 Apr; 13(4):10482-10492. PubMed ID: 35441569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH.
    Pérez-Avalos O; Sánchez-Herrera LM; Salgado LM; Ponce-Noyola T
    Curr Microbiol; 2008 Jul; 57(1):39-44. PubMed ID: 18379842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain.
    Shi P; Tian J; Yuan T; Liu X; Huang H; Bai Y; Yang P; Chen X; Wu N; Yao B
    Appl Environ Microbiol; 2010 Jun; 76(11):3620-4. PubMed ID: 20382811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putative endoglucanase PcGH5 from Phanerochaete chrysosporium is a β-xylosidase that cleaves xylans in synergistic action with endo-xylanase.
    Huy ND; Nguyen CL; Seo JW; Kim DH; Park SM
    J Biosci Bioeng; 2015 Apr; 119(4):416-20. PubMed ID: 25300189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of binding activity of xylan-binding domain by amino acid substitution.
    Sakata T; Takakura J; Miyakubo H; Osada Y; Wada R; Takahashi H; Yatsunami R; Fukui T; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):253-4. PubMed ID: 17150913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of ruminal xylanase with an extra proline-rich C-terminus on lignocellulosic biomass degradation.
    Dong R; Liao M; Liu X; Penttinen L; Hakulinen N; Qin X; Wang X; Huang H; Luo H; Yao B; Bai Y; Tu T
    Bioresour Technol; 2023 Mar; 372():128695. PubMed ID: 36731612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.