These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34156820)

  • 1. Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires.
    Mauser KW; Solà-Garcia M; Liebtrau M; Damilano B; Coulon PM; Vézian S; Shields PA; Meuret S; Polman A
    ACS Nano; 2021 Jul; 15(7):11385-11395. PubMed ID: 34156820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires.
    Sojo-Gordillo JM; Kaur Y; Tachikawa S; Alayo N; Salleras M; Forrer N; Fonseca L; Morata A; Tarancón A; Zardo I
    Nanoscale Horiz; 2024 Jun; 9(7):1200-1210. PubMed ID: 38767571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Cathodoluminescence Thermometry with a Lanthanide-Doped Heavy-Metal Oxide in Transmission Electron Microscopy.
    Park WW; Olshin PK; Kim YJ; Nho HW; Mamonova DV; Kolesnikov IE; Medvedev VA; Kwon OH
    ACS Nano; 2024 Feb; 18(6):4911-4921. PubMed ID: 38289164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport.
    Hippalgaonkar K; Huang B; Chen R; Sawyer K; Ercius P; Majumdar A
    Nano Lett; 2010 Nov; 10(11):4341-8. PubMed ID: 20939585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review.
    Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Nanoscale Excitation and Emission Mapping by Cathodoluminescence.
    Matsukata T; Ogura S; García de Abajo FJ; Sannomiya T
    ACS Nano; 2022 Dec; 16(12):21462-21470. PubMed ID: 36414014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phononic pathways towards rational design of nanowire heat conduction.
    Malhotra A; Maldovan M
    Nanotechnology; 2019 Sep; 30(37):372002. PubMed ID: 31151114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic growth and characterization of gallium nitride nanowires.
    Chen CC; Yeh CC; Chen CH; Yu MY; Liu HL; Wu JJ; Chen KH; Chen LC; Peng JY; Chen YF
    J Am Chem Soc; 2001 Mar; 123(12):2791-8. PubMed ID: 11456965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significantly suppressed thermal transport by doping In and Al atoms in gallium nitride.
    Qi C; Yu L; Zhu X; Li S; Du K; Qin Z; Qin G; Xiong Z
    Phys Chem Chem Phys; 2022 Sep; 24(35):21085-21093. PubMed ID: 36017798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g
    Meuret S; Coenen T; Woo SY; Ra YH; Mi Z; Polman A
    Nano Lett; 2018 Apr; 18(4):2288-2293. PubMed ID: 29546762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires.
    Westover T; Jones R; Huang JY; Wang G; Lai E; Talin AA
    Nano Lett; 2009 Jan; 9(1):257-63. PubMed ID: 19090697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathodoluminescence efficiency dependence on excitation density in n-type gallium nitride.
    Phillips MR; Telg H; Kucheyev SO; Gelhausen O; Toth M
    Microsc Microanal; 2003 Apr; 9(2):144-51. PubMed ID: 12639240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent thermal conductivities of 1D semiconducting nanowires via four-point-probe 3-ω method.
    Lee SY; Lee MR; Park NW; Kim GS; Choi HJ; Choi TY; Lee SK
    Nanotechnology; 2013 Dec; 24(49):495202. PubMed ID: 24231523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy.
    Sahoo S; Mallik SK; Sahu MC; Joseph A; Singh S; Gupta SK; Rout B; Pradhan GK; Sahoo S
    Nanotechnology; 2020 Dec; 31(50):505701. PubMed ID: 33021235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.