These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34156837)

  • 1. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity.
    Hango CR; Backlund CM; Davis HC; Posey ND; Minter LM; Tew GN
    Biomacromolecules; 2021 Jul; 22(7):2850-2863. PubMed ID: 34156837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
    Sarapas JM; Backlund CM; deRonde BM; Minter LM; Tew GN
    Chemistry; 2017 May; 23(28):6858-6863. PubMed ID: 28370636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics.
    Davis HC; Posey ND; Tew GN
    Biomacromolecules; 2022 Jan; 23(1):57-66. PubMed ID: 34879198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides.
    Behzadipour Y; Hemmati S
    Biomed Pharmacother; 2024 Jul; 176():116910. PubMed ID: 38852512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Cargo Identity Alters the Uptake of Cell-Penetrating Peptide (CPP)/Cargo Complexes: A Study on the Effect of Net Cargo Charge and Length.
    Hymel HC; Rahnama A; Sanchez OM; Liu D; Gauthier TJ; Melvin AT
    Cells; 2022 Apr; 11(7):. PubMed ID: 35406759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relating structure and internalization for ROMP-based protein mimics.
    Backlund CM; Takeuchi T; Futaki S; Tew GN
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1443-50. PubMed ID: 27039278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery.
    Di Pisa M; Chassaing G; Swiecicki JM
    J Pept Sci; 2015 May; 21(5):356-69. PubMed ID: 25787823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations on the Rational Design of Covalently Conjugated Cell-Penetrating Peptides (CPPs) for Intracellular Delivery of Proteins: A Guide to CPP Selection Using Glucarpidase as the Model Cargo Molecule.
    Behzadipour Y; Hemmati S
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31779220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.
    deRonde BM; Posey ND; Otter R; Caffrey LM; Minter LM; Tew GN
    Biomacromolecules; 2016 Jun; 17(6):1969-77. PubMed ID: 27103189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.
    Soleymani-Goloujeh M; Nokhodchi A; Niazi M; Najafi-Hajivar S; Shahbazi-Mojarrad J; Zarghami N; Zakeri-Milani P; Mohammadi A; Karimi M; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):91-103. PubMed ID: 29258339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes.
    Jha D; Mishra R; Gottschalk S; Wiesmüller KH; Ugurbil K; Maier ME; Engelmann J
    Bioconjug Chem; 2011 Mar; 22(3):319-28. PubMed ID: 21319732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
    Ramaker K; Henkel M; Krause T; Röckendorf N; Frey A
    Drug Deliv; 2018 Nov; 25(1):928-937. PubMed ID: 29656676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.
    Ma DX; Shi NQ; Qi XR
    Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to follow intracellular trafficking of cell-penetrating peptides.
    Pärnaste L; Arukuusk P; Zagato E; Braeckmans K; Langel Ü
    J Drug Target; 2016; 24(6):508-19. PubMed ID: 26460120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake kinetics of cell-penetrating peptides.
    Florén A; Mäger I; Langel U
    Methods Mol Biol; 2011; 683():117-28. PubMed ID: 21053126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides.
    Allen J; Pellois JP
    Sci Rep; 2022 Sep; 12(1):15981. PubMed ID: 36156072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.