BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34156873)

  • 21. Computer Game Assisted Task Specific Exercises in the Treatment of Motor and Cognitive Function and Quality of Life in Stroke: A Randomized Control Study.
    Ozen S; Senlikci HB; Guzel S; Yemisci OU
    J Stroke Cerebrovasc Dis; 2021 Sep; 30(9):105991. PubMed ID: 34293643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.
    Fluet GG; Patel J; Qiu Q; Yarossi M; Massood S; Adamovich SV; Tunik E; Merians AS
    Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke.
    Rozevink SG; van der Sluis CK; Garzo A; Keller T; Hijmans JM
    J Neuroeng Rehabil; 2021 Mar; 18(1):48. PubMed ID: 33726801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tai Chi-based exercise program provided via telerehabilitation compared to home visits in a post-stroke population who have returned home without intensive rehabilitation: study protocol for a randomized, non-inferiority clinical trial.
    Tousignant M; Corriveau H; Kairy D; Berg K; Dubois MF; Gosselin S; Swartz RH; Boulanger JM; Danells C
    Trials; 2014 Jan; 15():42. PubMed ID: 24479760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of a remote-handling-concept-based task-oriented arm training (ReHab-TOAT) on arm-hand skill performance in chronic stroke: a study protocol for a two-armed randomized controlled trial.
    Elmanowski J; Seelen H; Geers R; Kleynen M; Verbunt J
    Trials; 2023 Mar; 24(1):189. PubMed ID: 36918922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scoping review of outcome measures used in telerehabilitation and virtual reality for post-stroke rehabilitation.
    Veras M; Kairy D; Rogante M; Giacomozzi C; Saraiva S
    J Telemed Telecare; 2017 Jul; 23(6):567-587. PubMed ID: 27342850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent trends in telerehabilitation of stroke patients: A narrative review.
    Nikolaev VA; Nikolaev AA
    NeuroRehabilitation; 2022; 51(1):1-22. PubMed ID: 35527574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy.
    Ballester BR; Maier M; San Segundo Mozo RM; Castañeda V; Duff A; M J Verschure PF
    J Neuroeng Rehabil; 2016 Aug; 13(1):74. PubMed ID: 27506203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community.
    Burdea GC; Grampurohit N; Kim N; Polistico K; Kadaru A; Pollack S; Oh-Park M; Barrett AM; Kaplan E; Masmela J; Nori P
    Top Stroke Rehabil; 2020 Jul; 27(5):321-336. PubMed ID: 31875775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exoskeleton-Assisted Anthropomorphic Movement Training for the Upper Limb After Stroke: The EAMT Randomized Trial.
    Chen ZJ; He C; Xu J; Zheng CJ; Wu J; Xia N; Hua Q; Xia WG; Xiong CH; Huang XL
    Stroke; 2023 Jun; 54(6):1464-1473. PubMed ID: 37154059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.
    Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study protocol: home-based telehealth stroke care: a randomized trial for veterans.
    Chumbler NR; Rose DK; Griffiths P; Quigley P; McGee-Hernandez N; Carlson KA; Vandenberg P; Morey MC; Sanford J; Hoenig H
    Trials; 2010 Jun; 11():74. PubMed ID: 20591171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Telemedicine-guided education on secondary stroke and fall prevention following inpatient rehabilitation for Texas patients with stroke and their caregivers: a feasibility pilot study.
    Jhaveri MM; Benjamin-Garner R; Rianon N; Sherer M; Francisco G; Vahidy F; Kobayashi K; Gaber M; Shoemake P; Vu K; Trevino A; Grotta J; Savitz S
    BMJ Open; 2017 Sep; 7(9):e017340. PubMed ID: 28871024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study.
    Page SJ; Levine P; Leonard AC
    Neurorehabil Neural Repair; 2005 Mar; 19(1):27-32. PubMed ID: 15673841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study.
    Van de Winckel A; Carey JR; Bisson TA; Hauschildt EC; Streib CD; Durfee WK
    J Neuroeng Rehabil; 2018 Sep; 15(1):83. PubMed ID: 30227864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke.
    Daly JJ; McCabe JP; Holcomb J; Monkiewicz M; Gansen J; Pundik S
    Neurorehabil Neural Repair; 2019 Jul; 33(7):523-537. PubMed ID: 31131743
    [No Abstract]   [Full Text] [Related]  

  • 39. Rehabilitation of the upper arm early after stroke: Video games versus conventional rehabilitation. A randomized controlled trial.
    Laffont I; Froger J; Jourdan C; Bakhti K; van Dokkum LEH; Gouaich A; Bonnin HY; Armingaud P; Jaussent A; Picot MC; Le Bars E; Dupeyron A; Arquizan C; Gelis A; Mottet D
    Ann Phys Rehabil Med; 2020 May; 63(3):173-180. PubMed ID: 31830535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A one-year follow-up after modified constraint-induced movement therapy for chronic stroke patients with paretic arm: a prospective case series study.
    Takebayashi T; Amano S; Hanada K; Umeji A; Takahashi K; Marumoto K; Kodama N; Koyama T; Domen K
    Top Stroke Rehabil; 2015 Feb; 22(1):18-25. PubMed ID: 25776117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.