These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34157520)

  • 41. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
    Gorodetsky AA; Barton JK
    Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cleaning using nanobubbles: defouling by electrochemical generation of bubbles.
    Wu Z; Chen H; Dong Y; Mao H; Sun J; Chen S; Craig VS; Hu J
    J Colloid Interface Sci; 2008 Dec; 328(1):10-4. PubMed ID: 18829043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.
    Patel AN; McKelvey K; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(50):20246-9. PubMed ID: 23210684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of "glow discharge plasma" as an external stimulus on the self-assembly, morphology and binding affinity of gold nanoparticle-streptavidin conjugates.
    Mamdouh W; Li Y; Shawky SM; Azzazy HME; Liu CJ
    Int J Mol Sci; 2012; 13(6):6534-6547. PubMed ID: 22837648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy.
    Adamcik J; Klinov DV; Witz G; Sekatskii SK; Dietler G
    FEBS Lett; 2006 Oct; 580(24):5671-5. PubMed ID: 17007844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aggregation of human serum albumin on graphite and single-walled carbon nanotubes as studied by scanning probe microscopies.
    Rodríguez-Galván A; Contreras-Torres FF; Basiuk EV; Alvarez-Zauco E; Heredia A; Basiuk VA
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5491-8. PubMed ID: 21770209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite.
    Amemiya S; Chen R; Nioradze N; Kim J
    Acc Chem Res; 2016 Sep; 49(9):2007-14. PubMed ID: 27602588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Environmental Influence on Stripe Formation at the Graphite-Water Interface.
    Xu C; Qiao G; Nan N; Nan N; Bao L
    Chemphyschem; 2024 Aug; ():e202400641. PubMed ID: 39143859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling the surface chemistry of graphite by engineered self-assembled peptides.
    Khatayevich D; So CR; Hayamizu Y; Gresswell C; Sarikaya M
    Langmuir; 2012 Jun; 28(23):8589-93. PubMed ID: 22428620
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Revealing the hidden atom in graphite by low-temperature atomic force microscopy.
    Hembacher S; Giessibl FJ; Mannhart J; Quate CF
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12539-42. PubMed ID: 14504395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Comparative Study on the Self-Assembly of Peptide TGV-9 by
    Li Y; Li N; Wang L; Lu Q; Ji X; Zhang F
    Microsc Microanal; 2020 Apr; 26(2):319-325. PubMed ID: 32051052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.
    Kurra N; Prakash G; Basavaraja S; Fisher TS; Kulkarni GU; Reifenberger RG
    Nanotechnology; 2011 Jun; 22(24):245302. PubMed ID: 21508457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adhesive force measurement between HOPG and zinc oxide as an indicator for interfacial bonding of carbon fiber composites.
    Patterson BA; Galan U; Sodano HA
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15380-7. PubMed ID: 26107931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels.
    Elías AL; Botello-Méndez AR; Meneses-Rodríguez D; Jehová González V; Ramírez-González D; Ci L; Muñoz-Sandoval E; Ajayan PM; Terrones H; Terrones M
    Nano Lett; 2010 Feb; 10(2):366-72. PubMed ID: 19691280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Smorgasbord of Carbon: Electrochemical Analysis of Cobalt-Bis(benzenedithiolate) Complex Adsorption and Electrocatalytic Activity on Diverse Graphitic Supports.
    Eady SC; MacInnes MM; Lehnert N
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23624-34. PubMed ID: 27537431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular functionalization of graphite surfaces: basal plane versus step edge electrochemical activity.
    Zhang G; Kirkman PM; Patel AN; Cuharuc AS; McKelvey K; Unwin PR
    J Am Chem Soc; 2014 Aug; 136(32):11444-51. PubMed ID: 25035922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite.
    Paredes JI; Martínez-Alonso A; Tascón JM
    Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.