These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34157603)

  • 1. Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants.
    Vago ME; Jaurena G; Estevez JM; Castro MA; Zavala JA; Ciancia M
    Plant Physiol Biochem; 2021 Sep; 166():405-415. PubMed ID: 34157603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific hybridization improves the performance of Lotus spp. under saline stress.
    Escaray FJ; Antonelli CJ; Carrasco P; Ruiz OA
    Plant Sci; 2019 Jun; 283():202-210. PubMed ID: 31128690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants.
    Jung HG; Allen MS
    J Anim Sci; 1995 Sep; 73(9):2774-90. PubMed ID: 8582870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis.
    Sanchez DH; Pieckenstain FL; Escaray F; Erban A; Kraemer U; Udvardi MK; Kopka J
    Plant Cell Environ; 2011 Apr; 34(4):605-17. PubMed ID: 21251019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence.
    Manzur ME; Grimoldi AA; Insausti P; Striker GG
    Ann Bot; 2009 Nov; 104(6):1163-9. PubMed ID: 19687031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed genes potentially involved in the tolerance of Lotus tenuis to long-term alkaline stress.
    Paz RC; Rocco RA; Jiménez-Bremont JF; Rodríguez-Kessler M; Becerra-Flora A; Menéndez AB; Ruíz OA
    Plant Physiol Biochem; 2014 Sep; 82():279-88. PubMed ID: 25025825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem.
    Teakle N; Flowers T; Real D; Colmer T
    J Exp Bot; 2007; 58(8):2169-80. PubMed ID: 17510213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress.
    Corrêa-Ferreira ML; Viudes EB; de Magalhães PM; Paixão de Santana Filho A; Sassaki GL; Pacheco AC; de Oliveira Petkowicz CL
    Carbohydr Res; 2019 Sep; 483():107753. PubMed ID: 31362136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes.
    Escaray FJ; Passeri V; Babuin FM; Marco F; Carrasco P; Damiani F; Pieckenstain FL; Paolocci F; Ruiz OA
    BMC Plant Biol; 2014 Feb; 14():40. PubMed ID: 24490637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport.
    Teakle NL; Amtmann A; Real D; Colmer TD
    Physiol Plant; 2010 Aug; 139(4):358-74. PubMed ID: 20444189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.
    Paz RC; Reinoso H; Espasandin FD; González Antivilo FA; Sansberro PA; Rocco RA; Ruiz OA; Menéndez AB
    Plant Biol (Stuttg); 2014 Nov; 16(6):1042-9. PubMed ID: 24597843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying crops to increase cell wall digestibility.
    Jung HJ; Samac DA; Sarath G
    Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells.
    de Lima RB; dos Santos TB; Vieira LG; de Lourdes Lúcio Ferrarese M; Ferrarese-Filho O; Donatti L; Boeger MR; de Oliveira Petkowicz CL
    Carbohydr Polym; 2014 Nov; 112():686-94. PubMed ID: 25129798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestion of polysaccharides, protein and lipids by adult cockerels fed on diets containing a pectic cell-wall material from white lupin (Lupinus albus L.) cotyledon.
    Carré B; Leclercq B
    Br J Nutr; 1985 Nov; 54(3):669-80. PubMed ID: 2825761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages.
    Raffrenato E; Fievisohn R; Cotanch KW; Grant RJ; Chase LE; Van Amburgh ME
    J Dairy Sci; 2017 Oct; 100(10):8119-8131. PubMed ID: 28780096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of pectin-cellulose interaction in cell wall of lotus rhizome with assistance of ball-milling and galactosidase.
    Liu Y; Yan S; Li B; Li J
    Int J Biol Macromol; 2023 Aug; 246():125615. PubMed ID: 37391001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetic acid reducing the softening of lotus rhizome during heating by regulating the chelate-soluble polysaccharides.
    Liu G; Liu Y; Yan S; Li J
    Carbohydr Polym; 2020 Jul; 240():116209. PubMed ID: 32475543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Nutrient Contents and In vitro Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils.
    Boga M; Yurtseven S; Kilic U; Aydemir S; Polat T
    Asian-Australas J Anim Sci; 2014 Jun; 27(6):825-31. PubMed ID: 25050020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.
    Chen D; Harris PJ; Sims IM; Zujovic Z; Melton LD
    BMC Plant Biol; 2017 Jun; 17(1):104. PubMed ID: 28619057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submergence tolerance and recovery in Lotus: Variation among fifteen accessions in response to partial and complete submergence.
    Di Bella CE; Kotula L; Striker GG; Colmer TD
    J Plant Physiol; 2020 Jun; 249():153180. PubMed ID: 32422486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.