These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34157619)

  • 1. Elevating the charge separation of MgFe
    Kumar GM; Cho HD; Lee DJ; Kumar JR; Siva C; Ilanchezhiyan P; Kim DY; Kang TW
    Chemosphere; 2021 Nov; 283():131134. PubMed ID: 34157619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating the charge separation of ZnFe
    Lan Y; Liu Z; Guo Z; Ruan M; Xin Y
    J Colloid Interface Sci; 2019 Sep; 552():111-121. PubMed ID: 31112807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional Modification of Graphitic Carbon Nitride with MgFe2O4 for Enhanced Photocatalytic Hydrogen Generation.
    Chen J; Zhao D; Diao Z; Wang M; Guo L; Shen S
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18843-8. PubMed ID: 26237590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neodymium (Nd) based oxide perovskite nanostructures for photocatalytic and photoelectrochemical water splitting functions.
    Ilanchezhiyan P; Mohan Kumar G; Siva C; Cho HD; Lee DJ; Lakshmana Reddy N; Ramu AG; Kang TW; Kim DY
    Environ Res; 2021 Jun; 197():111128. PubMed ID: 33861975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic study and superparamagnetic nature of Zn-doped MgFe
    Manohar A; Krishnamoorthi C
    J Photochem Photobiol B; 2017 Aug; 173():456-465. PubMed ID: 28668514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Photocatalytic and Photoelectrochemical Performance of ZnO by Mg Doping: Experimental and Density Functional Theory Insights.
    Das A; Liu D; Wary RR; Vasenko AS; Prezhdo OV; Nair RG
    J Phys Chem Lett; 2023 May; 14(18):4134-4141. PubMed ID: 37103474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cation Distributions of Zn-doped Normal Spinel MgFe
    Zeng X; Hou Z; Ju J; Gao L; Zhang J; Peng Y
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadium-doped graphitic carbon nitride for multifunctional applications: Photoelectrochemical water splitting and antibacterial activities.
    Reddy IN; Reddy LV; Jayashree N; Reddy CV; Cho M; Kim D; Shim J
    Chemosphere; 2021 Feb; 264(Pt 2):128593. PubMed ID: 33070063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis.
    Fan W; Li M; Bai H; Xu D; Chen C; Li C; Ge Y; Shi W
    Langmuir; 2016 Feb; 32(6):1629-36. PubMed ID: 26797320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing novel MgFe
    Janani B; Okla MK; Al-Amri SS; Mohebaldin A; Alwasel YA; AbdElgawad H; Abdel-Maksoud MA; Thomas AM; Raju LL; Khan SS
    Chemosphere; 2022 Jun; 296():134012. PubMed ID: 35183579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO
    Wu T; Chen C; Wei Y; Lu R; Wang L; Jiang X
    Dalton Trans; 2019 Aug; 48(32):12096-12104. PubMed ID: 31321391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe/W Co-Doped BiVO
    Jiao Z; Zheng J; Feng C; Wang Z; Wang X; Lu G; Bi Y
    ChemSusChem; 2016 Oct; 9(19):2824-2831. PubMed ID: 27572550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO
    Zhao X; Chen Z
    Beilstein J Nanotechnol; 2017; 8():2640-2647. PubMed ID: 29259878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Conductivity and in Situ Formed Heterojunction via Zinc Doping in CuBi
    Hu Y; Hu Q; Chen X; Zhao M; Wang Y; Guan H; Hu X; Wang Y; Feng J
    Chemphyschem; 2024 Apr; 25(8):e202300897. PubMed ID: 38323673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO
    Quiñonero J; Pastor FJ; Orts JM; Gómez R
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14150-14159. PubMed ID: 33728897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing of WO
    Markhabayeva AA; Moniruddin M; Dupre R; Abdullin KA; Nuraje N
    J Phys Chem A; 2020 Jan; 124(3):486-491. PubMed ID: 31838843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.