These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 34157688)
1. Effects of bovine cancellous bone powder/poly amino acid composites on cellular behaviors and osteogenic performances. Luo L; Li P; Ren H; Ding Z; Yan Y; Li S; Yin J Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34157688 [TBL] [Abstract][Full Text] [Related]
2. Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction. Wang X; Zhao D; Ren H; Yan Y; Li S J Mater Sci Mater Med; 2021 Jan; 32(1):16. PubMed ID: 33491099 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a novel bovine cancellous bone/poly-amino acid composite with low immunogenicity, proper strength, and cytocompatibility in vitro. Luo L; Li S; Ji M; Ding Z; Yan Y; Yin J; Xiong Y J Biomed Mater Res A; 2021 Aug; 109(8):1490-1501. PubMed ID: 33258539 [TBL] [Abstract][Full Text] [Related]
4. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Wei X; Zhang Z; Wang L; Yan L; Yan Y; Wang C; Peng H; Fan X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38537374 [TBL] [Abstract][Full Text] [Related]
5. Developing novel Ca-zeolite/poly(amino acid) composites with hemostatic activity for bone substitute applications. Zhong Y; Chen X; Peng H; Ding Z; Yan Y J Biomater Sci Polym Ed; 2018 Nov; 29(16):1994-2010. PubMed ID: 30474514 [TBL] [Abstract][Full Text] [Related]
6. Preparation, Characterization and In Vitro Biological Evaluation of a Novel Pearl Powder/Poly-Amino Acid Composite as a Potential Substitute for Bone Repair and Reconstruction. Wu Y; Ding Z; Ren H; Ji M; Yan Y Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31071963 [TBL] [Abstract][Full Text] [Related]
7. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects. Yan L; Jiang DM Drug Des Devel Ther; 2015; 9():6497-508. PubMed ID: 26719675 [TBL] [Abstract][Full Text] [Related]
8. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). E LL; Cheng T; Li CJ; Zhang R; Zhang S; Liu HC; Zheng WJ Stem Cells Dev; 2020 Sep; 29(18):1215-1228. PubMed ID: 32674666 [TBL] [Abstract][Full Text] [Related]
9. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors. Zhou C; Ye C; Zhao C; Liao J; Li Y; Chen H; Huang W Med Sci Monit; 2020 Sep; 26():e924666. PubMed ID: 32894745 [TBL] [Abstract][Full Text] [Related]
10. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic. Kalantari E; Naghib SM Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. Carvalho MS; Cabral JM; da Silva CL; Vashishth D J Cell Biochem; 2019 Apr; 120(4):6555-6569. PubMed ID: 30362184 [TBL] [Abstract][Full Text] [Related]
12. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Lee YC; Chan YH; Hsieh SC; Lew WZ; Feng SW Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658685 [TBL] [Abstract][Full Text] [Related]
13. A cancellous bone matrix system with specific mineralisation degrees for mesenchymal stem cell differentiation and bone regeneration. Liu S; Wang Y; Wang J; Qiu P; Wang S; Shi Y; Li M; Chen P; Lin X; Fang X Biomater Sci; 2019 May; 7(6):2452-2467. PubMed ID: 30942200 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of osteoblast cells osteogenic differentiation and bone regeneration by hydroxyapatite/phosphoester modified poly(amino acid). Xiong Y; Huang J; Fu L; Ren H; Li S; Xia W; Yan Y Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110769. PubMed ID: 32279769 [TBL] [Abstract][Full Text] [Related]
15. Uncarboxylated osteocalcin promotes osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by activating the Erk-Smad/β-catenin signalling pathways. Liu Z; Yang J Cell Biochem Funct; 2020 Jan; 38(1):87-96. PubMed ID: 31674048 [TBL] [Abstract][Full Text] [Related]
16. The effect of recombinant human bone morphogenetic protein-2 on the osteogenic potential of rat mesenchymal stem cells after several passages. Ishikawa H; Kitoh H; Sugiura F; Ishiguro N Acta Orthop; 2007 Apr; 78(2):285-92. PubMed ID: 17464620 [TBL] [Abstract][Full Text] [Related]
17. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Fan X; Peng H; Li H; Yan Y J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309 [TBL] [Abstract][Full Text] [Related]
18. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766 [TBL] [Abstract][Full Text] [Related]
19. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Zhang X; Xu M; Song L; Wei Y; Lin Y; Liu W; Heng BC; Peng H; Wang Y; Deng X Biomaterials; 2013 Dec; 34(36):9103-14. PubMed ID: 24008040 [TBL] [Abstract][Full Text] [Related]
20. 20(S)-hydroxycholesterol and simvastatin synergistically enhance osteogenic differentiation of marrow stromal cells and bone regeneration by initiation of Raf/MEK/ERK signaling. Huang Y; Lin Y; Rong M; Liu W; He J; Zhou L J Mater Sci Mater Med; 2019 Jul; 30(8):87. PubMed ID: 31325047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]