These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34157689)

  • 1. Effect of chemical design of grafted polymers on the self-assembled morphology of polymer-tethered nanoparticles in nanotubes.
    Sato T; Kobayashi Y; Arai N
    J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34157689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of polymer-tethered nanoparticles with uniform and Janus surfaces in nanotubes.
    Sato T; Kobayashi Y; Michioka T; Arai N
    Soft Matter; 2021 Apr; 17(15):4047-4058. PubMed ID: 33725068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation study on the self-assembly of unimodal and bimodal polymer-grafted nanoparticles in a polymer melt.
    Shi R; Qian HJ; Lu ZY
    Phys Chem Chem Phys; 2017 Jun; 19(25):16524-16532. PubMed ID: 28612884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly and structural manipulation of diblock-copolymer grafted nanoparticles in a homopolymer matrix.
    Li S; Zhang Z; Hou G; Liu J; Gao Y; Coates P; Zhang L
    Phys Chem Chem Phys; 2019 Jun; 21(22):11785-11796. PubMed ID: 31115402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.
    Yi C; Zhang S; Webb KT; Nie Z
    Acc Chem Res; 2017 Jan; 50(1):12-21. PubMed ID: 27997119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles.
    Hou G; Xia X; Liu J; Wang W; Dong M; Zhang L
    J Phys Chem B; 2019 Mar; 123(9):2157-2168. PubMed ID: 30742436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes.
    Kobayashi Y; Arai N
    Soft Matter; 2016 Jan; 12(2):378-85. PubMed ID: 26497536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Janus or homogeneous nanoparticle mediated self-assembly of polymer electrolyte fuel cell membranes.
    Kobayashi Y; Arai N
    RSC Adv; 2018 May; 8(33):18568-18575. PubMed ID: 35541113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Block-copolymer-like self-assembly behavior of mobile-ligand grafted ultra-small nanoparticles.
    Xu FR; Shi R; Jia XM; Chai SC; Li HL; Qian HJ; Lu ZY
    Soft Matter; 2021 Jun; 17(24):5897-5906. PubMed ID: 34037067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of tether number and location on the self-assembly of polymer-tethered nanorods.
    Zhao L; Xue XG; Lu ZY; Li ZS
    J Mol Model; 2011 Nov; 17(11):3005-13. PubMed ID: 21360177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Tethered Polymers on Dynamics of Nanoparticles in Unentangled Polymer Melts.
    Ge T; Rubinstein M; Grest GS
    Macromolecules; 2020 Aug; 53(16):6898-6906. PubMed ID: 34366485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing-demixing transition in polymer-grafted spherical nanoparticles.
    Yatsyshin P; Fytas NG; Theodorakis PE
    Soft Matter; 2020 Jan; 16(3):703-708. PubMed ID: 31819935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-grafted nanoparticles prepared via a grafting-from strategy: a computer simulation study.
    Li L; Han C; Xu D; Xing JY; Xue YH; Liu H
    Phys Chem Chem Phys; 2018 Jul; 20(27):18400-18409. PubMed ID: 29946599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers.
    Reister E; Fredrickson GH
    J Chem Phys; 2005 Dec; 123(21):214903. PubMed ID: 16356066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles.
    Asai M; Zhao D; Kumar SK
    ACS Nano; 2017 Jul; 11(7):7028-7035. PubMed ID: 28618225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility.
    Wang Z; Zheng Z; Liu J; Wu Y; Zhang L
    Polymers (Basel); 2016 Aug; 8(9):. PubMed ID: 30974590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Design of a Janus-Nanoparticle-Based Sandwich Assay for Nucleic Acids.
    Sato T; Esashika K; Yamamoto E; Saiki T; Arai N
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures.
    Tang TY; Zhou Y; Arya G
    ACS Nano; 2019 Apr; 13(4):4111-4123. PubMed ID: 30883090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation study on the self-assembly of tethered nanoparticles with tunable shapes.
    Lu SF; Li BY; Li YC; Lu ZY
    RSC Adv; 2019 Jan; 9(3):1354-1361. PubMed ID: 35517998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.