BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34157692)

  • 1. Thermal boundary conductance of monolayer beyond-graphene two-dimensional materials on SiO
    Foss C; Aksamija Z
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34157692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Thermal Boundary Conductance in Few-Layer Ti
    Yasaei P; Hemmat Z; Foss CJ; Li SJ; Hong L; Behranginia A; Majidi L; Klie RF; Barsoum MW; Aksamija Z; Salehi-Khojin A
    Adv Mater; 2018 Oct; 30(43):e1801629. PubMed ID: 30252179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-High Interfacial Thermal Conductance via Double hBN Encapsulation for Efficient Thermal Management of 2D Electronics.
    Ye F; Liu Q; Xu B; Feng PX; Zhang X
    Small; 2023 Mar; 19(12):e2205726. PubMed ID: 36748291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS
    Yalon E; Aslan B; Smithe KKH; McClellan CJ; Suryavanshi SV; Xiong F; Sood A; Neumann CM; Xu X; Goodson KE; Heinz TF; Pop E
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43013-43020. PubMed ID: 29053241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of thermal boundary conductance of MoS
    Ong ZY; Cai Y; Zhang G; Zhang YW
    Nanotechnology; 2020 Dec; ():. PubMed ID: 33296879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlayer thermal conductance within a phosphorene and graphene bilayer.
    Hong Y; Zhang J; Zeng XC
    Nanoscale; 2016 Nov; 8(46):19211-19218. PubMed ID: 27841424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.
    Pei QX; Zhang X; Ding Z; Zhang YY; Zhang YW
    Phys Chem Chem Phys; 2017 Jul; 19(26):17180-17186. PubMed ID: 28638905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles investigations on a two-dimensional S
    Li J; Wang YP; Zhang S; Duan H; Long M
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Two-Dimensional Materials beyond Graphene.
    Bhimanapati GR; Lin Z; Meunier V; Jung Y; Cha J; Das S; Xiao D; Son Y; Strano MS; Cooper VR; Liang L; Louie SG; Ringe E; Zhou W; Kim SS; Naik RR; Sumpter BG; Terrones H; Xia F; Wang Y; Zhu J; Akinwande D; Alem N; Schuller JA; Schaak RE; Terrones M; Robinson JA
    ACS Nano; 2015 Dec; 9(12):11509-39. PubMed ID: 26544756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model.
    Gaskins JT; Kotsonis G; Giri A; Ju S; Rohskopf A; Wang Y; Bai T; Sachet E; Shelton CT; Liu Z; Cheng Z; Foley BM; Graham S; Luo T; Henry A; Goorsky MS; Shiomi J; Maria JP; Hopkins PE
    Nano Lett; 2018 Dec; 18(12):7469-7477. PubMed ID: 30412411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.