These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34157956)

  • 1. Magnetic dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction followed by graphite furnace atomic absorption spectrometry for quantification of Se(IV) and Se(VI) in food samples.
    Chen S; Liu Y; Wang C; Yan J; Lu D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Sep; 38(9):1539-1550. PubMed ID: 34157956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Mn(II) and Mn(VII) in beverage samples using magnetic dispersive micro-solid phase extraction coupled with solidified floating organic drop microextraction followed by graphite furnace atomic absorption spectrometry.
    Chen S; Yan J; Liu Y; Wang C; Lu D
    Food Chem; 2021 Oct; 359():129958. PubMed ID: 33957332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.
    Tuzen M; Pekiner OZ
    Food Chem; 2015 Dec; 188():619-24. PubMed ID: 26041239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.
    Wang X; Wu L; Cao J; Hong X; Ye R; Chen W; Yuan T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1190-9. PubMed ID: 27181611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-syringe solid phase extraction and in-syringe vortex-assisted solidified floating organic drop microextraction of Sb(III) and Sb(V) in rice wines with determination by graphite furnace atomic absorption spectrometry.
    Chen S; Liu J; Yan J; Wang C; Lu D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Mar; 39(3):499-507. PubMed ID: 35061579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry.
    Liu Y; He M; Chen B; Hu B
    Talanta; 2015 Sep; 142():213-20. PubMed ID: 26003714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.
    Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K
    Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.
    Naeemullah ; Kazi TG; Tuzen M
    Food Chem; 2015 Apr; 172():161-5. PubMed ID: 25442538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples.
    Zhang Y; Duan J; He M; Chen B; Hu B
    Talanta; 2013 Oct; 115():730-6. PubMed ID: 24054655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples.
    Panhwar AH; Tuzen M; Kazi TG
    Talanta; 2017 Dec; 175():352-358. PubMed ID: 28842002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Ultra-Trace Cobalt in Water Samples Using Dispersive Liquid-Liquid Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry.
    Han Q; Liu Y; Huo Y; Li D; Yang X
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry.
    Mandlate JS; Soares BM; Seeger TS; Vecchia PD; Mello PA; Flores EMM; Duarte FA
    Food Chem; 2017 Apr; 221():907-912. PubMed ID: 27979292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Se using a solid-phase micro-extraction device coupled to a graphite furnace and detection by gas chromatography-mass spectrometry.
    Gomes da Silva E; Augusto F; Arruda MA
    Analyst; 2012 Aug; 137(16):3841-6. PubMed ID: 22760433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents.
    Najafi NM; Tavakoli H; Abdollahzadeh Y; Alizadeh R
    Anal Chim Acta; 2012 Feb; 714():82-8. PubMed ID: 22244140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration.
    Ortegón S; Peñaranda PA; Rodríguez CF; Noguera MJ; Florez SL; Cruz JC; Rivas RE; Osma JF
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.
    Jiang HM; Yang T; Wang YH; Lian HZ; Hu X
    Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.
    Ghanbarian M; Afzali D; Mostafavi A; Fathirad F
    J AOAC Int; 2013; 96(4):880-6. PubMed ID: 24000764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salting-out strategy for speciation of selenium in aqueous samples using centrifuge-less dispersive liquid-liquid microextraction.
    Mostafavi B; Feizbakhsh A; Konoz E; Faraji H
    Environ Monit Assess; 2020 Sep; 192(10):662. PubMed ID: 32979107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.