These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 34157973)

  • 1. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation.
    Martínez-Ruiz EB; Cooper M; Barrero-Canosa J; Haryono MAS; Bessarab I; Williams RBH; Szewzyk U
    BMC Genomics; 2021 Jun; 22(1):464. PubMed ID: 34157973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese-oxidizing bacteria isolated from natural and technical systems remove cylindrospermopsin.
    Martínez-Ruiz EB; Cooper M; Fastner J; Szewzyk U
    Chemosphere; 2020 Jan; 238():124625. PubMed ID: 31466008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of manganese(II,III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes.
    Geszvain K; McCarthy JK; Tebo BM
    Appl Environ Microbiol; 2013 Jan; 79(1):357-66. PubMed ID: 23124227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains.
    Francis CA; Tebo BM
    Appl Environ Microbiol; 2001 Sep; 67(9):4272-8. PubMed ID: 11526033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1.
    Geszvain K; Smesrud L; Tebo BM
    Appl Environ Microbiol; 2016 Jul; 82(13):3774-3782. PubMed ID: 27084014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese-oxidizing bacteria form multiple cylindrospermopsin transformation products with reduced human liver cell toxicity.
    Martínez-Ruiz EB; Cooper M; Al-Zeer MA; Kurreck J; Adrian L; Szewzyk U
    Sci Total Environ; 2020 Aug; 729():138924. PubMed ID: 32361450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic di-GMP Signaling Links Biofilm Formation and Mn(II) Oxidation in Pseudomonas resinovorans.
    Piazza A; Parra L; Ciancio Casalini L; Sisti F; Fernández J; Malone JG; Ottado J; Serra DO; Gottig N
    mBio; 2022 Dec; 13(6):e0273422. PubMed ID: 36374078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An uncertain role for Cu(II) in stimulating Mn(II) oxidation by Leptothrix discophora SS-1.
    El Gheriany IA; Bocioaga D; Hay AG; Ghiorse WC; Shuler ML; Lion LW
    Arch Microbiol; 2011 Feb; 193(2):89-93. PubMed ID: 21063867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomic and metabolic analysis of manganese-oxidizing mechanisms in Celeribacter manganoxidans DY25
    Wang X; Yu M; Wang L; Lin H; Li B; Xue CX; Sun H; Zhang XH
    Genomics; 2020 Mar; 112(2):2080-2091. PubMed ID: 31809796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese-oxidizing bacteria mediate the degradation of 17α-ethinylestradiol.
    Sabirova JS; Cloetens LF; Vanhaecke L; Forrez I; Verstraete W; Boon N
    Microb Biotechnol; 2008 Nov; 1(6):507-12. PubMed ID: 21261871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 α-ethinylestradiol.
    Tran TN; Kim DG; Ko SO
    J Hazard Mater; 2018 Feb; 344():350-359. PubMed ID: 29080488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation.
    Johnson HA; Tebo BM
    Arch Microbiol; 2008 Jan; 189(1):59-69. PubMed ID: 17673976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.
    Francis CA; Tebo BM
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):71-8. PubMed ID: 10941787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in
    Ciancio Casalini L; Piazza A; Masotti F; Garavaglia BS; Ottado J; Gottig N
    Front Mol Biosci; 2022; 9():1015582. PubMed ID: 36339723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides.
    Li K; Xu A; Wu D; Zhao S; Meng T; Zhang Y
    Bioresour Technol; 2021 May; 328():124826. PubMed ID: 33631461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1.
    Geszvain K; Tebo BM
    Appl Environ Microbiol; 2010 Feb; 76(4):1224-31. PubMed ID: 20038702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriogenic manganese oxides.
    Spiro TG; Bargar JR; Sposito G; Tebo BM
    Acc Chem Res; 2010 Jan; 43(1):2-9. PubMed ID: 19778036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Formation and Removal of Complexed Mn(III) by
    Wright MH; Geszvain K; Oldham VE; Luther GW; Tebo BM
    Front Microbiol; 2018; 9():560. PubMed ID: 29706936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic manganese oxides combined with 1-hydroxybenzotriazol and an Mn(II)-oxidizing enzyme from Pleosporales sp. Mn1 oxidize 3,4-dimethoxytoluene to yield 3,4-dimethoxybenzaldehyde.
    Yoshimura Y; Tani S; Fujiwara M; Nakamura M; Sumitani JI; Kawaguchi T
    J Biosci Bioeng; 2021 May; 131(5):475-482. PubMed ID: 33495046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese removal during bench-scale biofiltration.
    Burger MS; Mercer SS; Shupe GD; Gagnon GA
    Water Res; 2008 Dec; 42(19):4733-42. PubMed ID: 18809196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.