These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34158035)

  • 1. The adaptive benefit of evolved increases in hemoglobin-O
    Wearing OH; Ivy CM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Natarajan C; Cheviron ZA; Storz JF; Scott GR
    BMC Biol; 2021 Jun; 19(1):128. PubMed ID: 34158035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance.
    Wearing OH; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110636. PubMed ID: 34119652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variation in haemoglobin is associated with evolved changes in breathing in high-altitude deer mice.
    Ivy CM; Wearing OH; Natarajan C; Schweizer RM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Petersen EE; Fago A; Cheviron ZA; Storz JF; Scott GR
    J Exp Biol; 2022 Jan; 225(2):. PubMed ID: 34913467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.
    Jensen B; Storz JF; Fago A
    Comp Biochem Physiol A Mol Integr Physiol; 2016 May; 195():10-4. PubMed ID: 26808972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated changes across the O
    Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the heart in the evolution of aerobic performance.
    Scott GR; Garvey KM; Wearing OH
    J Exp Biol; 2024 Oct; 227(20):. PubMed ID: 39045710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.
    Tate KB; Ivy CM; Velotta JP; Storz JF; McClelland GB; Cheviron ZA; Scott GR
    J Exp Biol; 2017 Oct; 220(Pt 20):3616-3620. PubMed ID: 28839010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA; McClelland GB
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice.
    Coulson SZ; Robertson CE; Mahalingam S; McClelland GB
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude.
    Dane DM; Cao K; Lu H; Yilmaz C; Dolan J; Thaler CD; Ravikumar P; Hammond KA; Hsia CCW
    J Appl Physiol (1985); 2018 Nov; 125(5):1411-1423. PubMed ID: 30091664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive increases in respiratory capacity and O
    Dawson NJ; Scott GR
    FASEB J; 2022 Jul; 36(7):e22391. PubMed ID: 35661419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic differences in hemoglobin function between highland and lowland deer mice.
    Storz JF; Runck AM; Moriyama H; Weber RE; Fago A
    J Exp Biol; 2010 Aug; 213(Pt 15):2565-74. PubMed ID: 20639417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice.
    Scott GR; Guo KH; Dawson NJ
    Integr Comp Biol; 2018 Sep; 58(3):506-518. PubMed ID: 29873740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice.
    Velotta JP; Robertson CE; Schweizer RM; McClelland GB; Cheviron ZA
    Mol Biol Evol; 2020 Aug; 37(8):2309-2321. PubMed ID: 32243546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid oxidation during thermogenesis in high-altitude deer mice (
    Lyons SA; Tate KB; Welch KC; McClelland GB
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R735-R746. PubMed ID: 33729020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.