These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846 [TBL] [Abstract][Full Text] [Related]
8. Observation of an apparent first-order glass transition in ultrafragile Pt-Cu-P bulk metallic glasses. Na JH; Corona SL; Hoff A; Johnson WL Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2779-2787. PubMed ID: 31992640 [TBL] [Abstract][Full Text] [Related]
9. High-entropy induced a glass-to-glass transition in a metallic glass. Luan H; Zhang X; Ding H; Zhang F; Luan JH; Jiao ZB; Yang YC; Bu H; Wang R; Gu J; Shao C; Yu Q; Shao Y; Zeng Q; Chen N; Liu CT; Yao KF Nat Commun; 2022 Apr; 13(1):2183. PubMed ID: 35449135 [TBL] [Abstract][Full Text] [Related]
10. Aging kinetics of levoglucosan orientational glass as a rate dispersion process and consequences for the heterogeneous dynamics view. Righetti MC; Tombari E; Johari GP J Chem Phys; 2016 Aug; 145(5):054501. PubMed ID: 27497559 [TBL] [Abstract][Full Text] [Related]
11. Dynamically correlated regions and configurational entropy in supercooled liquids. Capaccioli S; Ruocco G; Zamponi F J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368 [TBL] [Abstract][Full Text] [Related]
12. Dynamics-Entropy Relationship in Metallic Glasses. Cao LL; Wang YJ J Phys Chem Lett; 2024 Jan; 15(3):811-816. PubMed ID: 38232179 [TBL] [Abstract][Full Text] [Related]
13. Connection between Mechanical Relaxation and Equilibration Kinetics in a High-Entropy Metallic Glass. Duan YJ; Nabahat M; Tong Y; Ortiz-Membrado L; Jiménez-Piqué E; Zhao K; Wang YJ; Yang Y; Wada T; Kato H; Pelletier JM; Qiao JC; Pineda E Phys Rev Lett; 2024 Feb; 132(5):056101. PubMed ID: 38364152 [TBL] [Abstract][Full Text] [Related]
14. Understanding Slow and Heterogeneous Dynamics in Model Supercooled Glass-Forming Liquids. Tah I; Mutneja A; Karmakar S ACS Omega; 2021 Mar; 6(11):7229-7239. PubMed ID: 33778237 [TBL] [Abstract][Full Text] [Related]
15. Configurational Entropy Effects on Glass Transition in Metallic Glasses. Yang M; Li W; Liu X; Wang H; Wu Y; Wang X; Zhang F; Zeng Q; Ma D; Ruan H; Lu Z J Phys Chem Lett; 2022 Aug; 13(33):7889-7897. PubMed ID: 35979998 [TBL] [Abstract][Full Text] [Related]
16. Ionic self-diffusion and the glass transition anomaly in aluminosilicates. Atila A; Ouaskit S; Hasnaoui A Phys Chem Chem Phys; 2020 Aug; 22(30):17205-17212. PubMed ID: 32677636 [TBL] [Abstract][Full Text] [Related]
17. High-temperature bulk metallic glasses developed by combinatorial methods. Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727 [TBL] [Abstract][Full Text] [Related]
18. Structure and relaxation in germanium selenide glasses and supercooled liquids: a Raman spectroscopic study. Edwards TG; Sen S J Phys Chem B; 2011 Apr; 115(15):4307-14. PubMed ID: 21446741 [TBL] [Abstract][Full Text] [Related]
19. Configurational entropy of polar glass formers and the effect of electric field on glass transition. Matyushov DV J Chem Phys; 2016 Jul; 145(3):034504. PubMed ID: 27448893 [TBL] [Abstract][Full Text] [Related]
20. Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Rodríguez-Tinoco C; González-Silveira M; Barrio M; Lloveras P; Tamarit JL; Garden JL; Rodríguez-Viejo J Sci Rep; 2016 Oct; 6():34296. PubMed ID: 27694814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]