These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34159204)

  • 1. LSTMCNNsucc: A Bidirectional LSTM and CNN-Based Deep Learning Method for Predicting Lysine Succinylation Sites.
    Huang G; Shen Q; Zhang G; Wang P; Yu ZG
    Biomed Res Int; 2021; 2021():9923112. PubMed ID: 34159204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
    Wang H; Zhao H; Yan Z; Zhao J; Han J
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34208298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction.
    Thapa N; Chaudhari M; McManus S; Roy K; Newman RH; Saigo H; Kc DB
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):63. PubMed ID: 32321437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinylation Site Prediction Based on Protein Sequences Using the IFS-LightGBM (BO) Model.
    Zhang L; Liu M; Qin X; Liu G
    Comput Math Methods Med; 2020; 2020():8858489. PubMed ID: 33224267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features.
    Hasan MM; Kurata H
    PLoS One; 2018; 13(10):e0200283. PubMed ID: 30312302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module.
    Jia J; Wu G; Li M; Qiu W
    BMC Bioinformatics; 2022 Oct; 23(1):450. PubMed ID: 36316638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pSuc-PseRat: Predicting Lysine Succinylation in Proteins by Exploiting the Ratios of Sequence Coupling and Properties.
    Ai H; Wu R; Zhang L; Wu X; Ma J; Hu H; Huang L; Chen W; Zhao J; Liu H
    J Comput Biol; 2017 Oct; 24(10):1050-1059. PubMed ID: 28682641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepPRMS: advanced deep learning model to predict protein arginine methylation sites.
    Khandelwal M; Kumar Rout R
    Brief Funct Genomics; 2024 Jul; 23(4):452-463. PubMed ID: 38267081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Assessment of Bioinformatics Tools for Lysine Succinylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Cells; 2019 Jan; 8(2):. PubMed ID: 30696115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Analysis of the Lysine Succinylome in Candida albicans.
    Zheng H; He Y; Zhou X; Qian G; Lv G; Shen Y; Liu J; Li D; Li X; Liu W
    J Proteome Res; 2016 Oct; 15(10):3793-3801. PubMed ID: 27605073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel model of DenseCNN and ordered-neuron LSTM for generic and species-specific succinylation site prediction.
    Wang H; Zhao H; Zhang J; Han J; Liu Z
    Biotechnol Bioeng; 2022 Jul; 119(7):1755-1767. PubMed ID: 35320585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HybridSucc: A Hybrid-learning Architecture for General and Species-specific Succinylation Site Prediction.
    Ning W; Xu H; Jiang P; Cheng H; Deng W; Guo Y; Xue Y
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):194-207. PubMed ID: 32861878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protein succinylation sites prediction method based on the hybrid architecture of LSTM network and CNN.
    Zhang D; Wang S
    J Bioinform Comput Biol; 2022 Apr; 20(2):2250003. PubMed ID: 35191361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.