These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34159320)

  • 1. Protocol for determining protein cysteine thiol redox status using western blot analysis.
    Pant BD; Oh S; Mysore KS
    STAR Protoc; 2021 Jun; 2(2):100566. PubMed ID: 34159320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L; Eirich J; Finkemeier I; Dietz KJ
    Methods Mol Biol; 2024; 2832():99-113. PubMed ID: 38869790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic approaches to the characterization of protein thiol modification.
    Chouchani ET; James AM; Fearnley IM; Lilley KS; Murphy MP
    Curr Opin Chem Biol; 2011 Feb; 15(1):120-8. PubMed ID: 21130020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol to quantify palmitoylation of cysteines in budding yeast.
    Lei Y; Zhu J; Li H; Kong E; Lu K
    STAR Protoc; 2022 Mar; 3(1):101035. PubMed ID: 34977681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state.
    Julio AR; Yan T; Backus KM
    STAR Protoc; 2024 Mar; 5(1):102865. PubMed ID: 38329879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol/disulfide redox states in signaling and sensing.
    Go YM; Jones DP
    Crit Rev Biochem Mol Biol; 2013; 48(2):173-81. PubMed ID: 23356510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Redox Profiling of the Thiol Proteome of
    Sievers S; Dittmann S; Jordt T; Otto A; Hochgräfe F; Riedel K
    Mol Cell Proteomics; 2018 May; 17(5):1035-1046. PubMed ID: 29496906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M; Dietz KJ; Ströher E
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation.
    Ghezzi P; Bonetto V; Fratelli M
    Antioxid Redox Signal; 2005; 7(7-8):964-72. PubMed ID: 15998251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox signalling via the cellular thiolstat.
    Jacob C
    Biochem Soc Trans; 2011 Oct; 39(5):1247-53. PubMed ID: 21936797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical 'omics' approaches for understanding protein cysteine oxidation in biology.
    Leonard SE; Carroll KS
    Curr Opin Chem Biol; 2011 Feb; 15(1):88-102. PubMed ID: 21130680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.