These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34159675)

  • 1. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect.
    Yu Z; Ji N; Xiong J; Li X; Zhang R; Zhang L; Lu X
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20786-20794. PubMed ID: 34159675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation.
    Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X
    Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations.
    Dong C; Yu Q; Ye RP; Su P; Liu J; Wang GH
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18374-18379. PubMed ID: 32588534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactant enrichment in hollow void of Pt NPs@MnOx nanoreactors for boosting hydrogenation performance.
    Ma Y; Wang L; Zhao W; Liu T; Li H; Luo W; Jiang Q; Liu W; Yang Q; Huang J; Zhang R; Liu J; Lu GQM; Li C
    Natl Sci Rev; 2023 Oct; 10(10):nwad201. PubMed ID: 37671330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt nanoparticles confined in hollow silica nanoreactors as highly efficient catalysts for semihydrogenations of alkynes at atmospheric H
    Xu C; Li K; Yu H; Liu M; Zhou S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):334-342. PubMed ID: 36252509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis.
    Yu Z; Ji N; Li X; Zhang R; Qiao Y; Xiong J; Liu J; Lu X
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202213612. PubMed ID: 36346146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Pyridinic Nitrogen Sites Promoting Levulinic Acid Hydrogenations over Double-Shelled Hollow Ru/C Nanoreactors.
    Liu X; Ye S; Lan G; Su P; Zhang X; Price CAH; Li Y; Liu J
    Small; 2021 Aug; 17(33):e2101271. PubMed ID: 34254441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions.
    Li B; Kwok KM; Zeng HC
    ACS Appl Mater Interfaces; 2021 May; 13(17):20524-20538. PubMed ID: 33881838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source.
    Jędrzejczyk M; Soszka E; Goscianska J; Kozanecki M; Grams J; Ruppert AM
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Hollow Nanoreactors for Size- and Shape-Selective Catalytic Semihydrogenation Driven by Molecular Recognition.
    Pi Y; Cui L; Luo W; Li H; Ma Y; Ta N; Wang X; Gao R; Wang D; Yang Q; Liu J
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202307096. PubMed ID: 37394778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow Nanoreactors Unlock New Possibilities for Persulfate-Based Advanced Oxidation Processes.
    Wang K; Wang R; Zhang S; Wang M; He Z; Chen H; Ho SH
    Small; 2024 Oct; 20(42):e2401796. PubMed ID: 38966879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres.
    Yang Y; Zhang S; Gu L; Shao S; Li W; Zeng D; Yang F; Hao S
    J Colloid Interface Sci; 2020 Sep; 576():394-403. PubMed ID: 32460100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of Toluene to Methyl Cyclohexane over PtRh Bimetallic Nanoparticle-Encaged Hollow Mesoporous Silica Catalytic Nanoreactors.
    Li K; An H; Yan P; Yang C; Xiao T; Wang J; Zhou S
    ACS Omega; 2021 Mar; 6(8):5846-5855. PubMed ID: 33681623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Wu L; Song J; Zhou B; Wu T; Jiang T; Han B
    Chem Asian J; 2016 Oct; 11(19):2792-2796. PubMed ID: 27305341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Construction of a Hollow Au@Bimetal-Organic Framework Core-Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction.
    Qin N; Pan A; Yuan J; Ke F; Wu X; Zhu J; Liu J; Zhu J
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12463-12471. PubMed ID: 33657796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine-promoted Ru
    Yang Y; Yang F; Wang H; Zhou B; Hao S
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.