These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34159702)
1. Origin and evolution of fungus farming in wood-boring Coleoptera - a palaeontological perspective. Peris D; Delclòs X; Jordal B Biol Rev Camb Philos Soc; 2021 Dec; 96(6):2476-2488. PubMed ID: 34159702 [TBL] [Abstract][Full Text] [Related]
2. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Farrell BD; Sequeira AS; O'Meara BC; Normark BB; Chung JH; Jordal BH Evolution; 2001 Oct; 55(10):2011-27. PubMed ID: 11761062 [TBL] [Abstract][Full Text] [Related]
3. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Vanderpool D; Bracewell RR; McCutcheon JP Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025 [TBL] [Abstract][Full Text] [Related]
4. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini. Mayers CG; Harrington TC; Mcnew DL; Roeper RA; Biedermann PHW; Masuya H; Bateman CC Mycologia; 2020; 112(6):1104-1137. PubMed ID: 32552515 [TBL] [Abstract][Full Text] [Related]
5. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Hulcr J; Stelinski LL Annu Rev Entomol; 2017 Jan; 62():285-303. PubMed ID: 27860522 [TBL] [Abstract][Full Text] [Related]
6. Nutrient-Poor Breeding Substrates of Ambrosia Beetles Are Enriched With Biologically Important Elements. Lehenberger M; Foh N; Göttlein A; Six D; Biedermann PHW Front Microbiol; 2021; 12():664542. PubMed ID: 33981292 [TBL] [Abstract][Full Text] [Related]
7. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles. Li Y; Simmons DR; Bateman CC; Short DP; Kasson MT; Rabaglia RJ; Hulcr J PLoS One; 2015; 10(9):e0137689. PubMed ID: 26367271 [TBL] [Abstract][Full Text] [Related]
8. Ophiostomatalean fungi associated with wood boring beetles in South Africa including two new species. Nel WJ; Wingfield MJ; de Beer ZW; Duong TA Antonie Van Leeuwenhoek; 2021 Jun; 114(6):667-686. PubMed ID: 33677752 [TBL] [Abstract][Full Text] [Related]
9. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. Jordal BH; Cognato AI BMC Evol Biol; 2012 Aug; 12():133. PubMed ID: 22852794 [TBL] [Abstract][Full Text] [Related]
10. Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines. Skelton J; Jusino MA; Li Y; Bateman C; Thai PH; Wu C; Lindner DL; Hulcr J Microb Ecol; 2018 Oct; 76(3):839-850. PubMed ID: 29476344 [TBL] [Abstract][Full Text] [Related]
11. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Skelton J; Jusino MA; Carlson PS; Smith K; Banik MT; Lindner DL; Palmer JM; Hulcr J Mol Ecol; 2019 Nov; 28(22):4971-4986. PubMed ID: 31596982 [TBL] [Abstract][Full Text] [Related]
12. Lipids and small metabolites provisioned by ambrosia fungi to symbiotic beetles are phylogeny-dependent, not convergent. Huang YT; Skelton J; Hulcr J ISME J; 2020 May; 14(5):1089-1099. PubMed ID: 31988472 [TBL] [Abstract][Full Text] [Related]
13. Repeated evolution of crop theft in fungus-farming ambrosia beetles. Hulcr J; Cognato AI Evolution; 2010 Nov; 64(11):3205-12. PubMed ID: 20633043 [TBL] [Abstract][Full Text] [Related]
14. A mid-Cretaceous ambrosia fungus, Paleoambrosia entomophila gen. nov. et sp. nov. (Ascomycota: Ophiostomatales) in Burmese (Myanmar) amber, and evidence for a femoral mycangium. Poinar GO; Vega FE Fungal Biol; 2018 Dec; 122(12):1159-1162. PubMed ID: 30449353 [TBL] [Abstract][Full Text] [Related]
15. Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. Ibarra-Juarez LA; Burton MAJ; Biedermann PHW; Cruz L; Desgarennes D; Ibarra-Laclette E; Latorre A; Alonso-Sánchez A; Villafan E; Hanako-Rosas G; López L; Vázquez-Rosas-Landa M; Carrion G; Carrillo D; Moya A; Lamelas A mSystems; 2020 Sep; 5(5):. PubMed ID: 32934115 [TBL] [Abstract][Full Text] [Related]
16. First experimental evidence for active farming in ambrosia beetles and strong heredity of garden microbiomes. Diehl JMC; Kowallik V; Keller A; Biedermann PHW Proc Biol Sci; 2022 Nov; 289(1986):20221458. PubMed ID: 36321493 [TBL] [Abstract][Full Text] [Related]
17. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). Biedermann PH; Klepzig KD; Taborsky M; Six DL FEMS Microbiol Ecol; 2013 Mar; 83(3):711-23. PubMed ID: 23057948 [TBL] [Abstract][Full Text] [Related]
18. Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Joseph R; Keyhani NO Appl Microbiol Biotechnol; 2021 May; 105(9):3393-3410. PubMed ID: 33837831 [TBL] [Abstract][Full Text] [Related]
19. Patterns of functional enzyme activity in fungus farming ambrosia beetles. De Fine Licht HH; Biedermann PH Front Zool; 2012 Jun; 9(1):13. PubMed ID: 22672512 [TBL] [Abstract][Full Text] [Related]