BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34159711)

  • 1. Genome sequencing for detection of pathogenic deep intronic variation: A clinical case report illustrating opportunities and challenges.
    Walker S; Lamoureux S; Khan T; Joynt ACM; Bradley M; Branson HM; Carter MT; Hayeems RZ; Jagiello L; Marshall CR; Meyn MS; Miller SP; Wilson D; Scherer SW; Blaser S; Mireskandari K; Costain G
    Am J Med Genet A; 2021 Oct; 185(10):3129-3135. PubMed ID: 34159711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization.
    Di Scipio M; Tavares E; Deshmukh S; Audo I; Green-Sanderson K; Zubak Y; Zine-Eddine F; Pearson A; Vig A; Tang CY; Mollica A; Karas J; Tumber A; Yu CW; Billingsley G; Wilson MD; Zeitz C; Héon E; Vincent A
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):36. PubMed ID: 32881472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy.
    Hiraide T; Nakashima M; Ikeda T; Tanaka D; Osaka H; Saitsu H
    J Hum Genet; 2020 Oct; 65(10):921-925. PubMed ID: 32483275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep intronic DLG4 variant resulting in DLG4-related synaptopathy.
    Levy AM; Ganapathi M; Chung WK; Tümer Z
    Clin Genet; 2024 Jan; 105(1):77-80. PubMed ID: 37525972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineation of the clinical, molecular and cellular aspects of novel JAM3 mutations underlying the autosomal recessive hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts.
    Akawi NA; Canpolat FE; White SM; Quilis-Esquerra J; Morales Sanchez M; Gamundi MJ; Mochida GH; Walsh CA; Ali BR; Al-Gazali L
    Hum Mutat; 2013 Mar; 34(3):498-505. PubMed ID: 23255084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncanonical Splice Site and Deep Intronic FRMD7 Variants Activate Cryptic Exons in X-linked Infantile Nystagmus.
    Lee J; Jeong H; Won D; Shin S; Lee ST; Choi JR; Byeon SH; Kuht HJ; Thomas MG; Han J
    Transl Vis Sci Technol; 2022 Jun; 11(6):25. PubMed ID: 35762937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A likely pathogenic variant putatively affecting splicing of PIGA identified in a multiple congenital anomalies hypotonia-seizures syndrome 2 (MCAHS2) family pedigree via whole-exome sequencing.
    Yang J; Wang Q; Zhuo Q; Tian H; Li W; Luo F; Zhang J; Bi D; Peng J; Zhou D; Xin H
    Mol Genet Genomic Med; 2018 Sep; 6(5):739-748. PubMed ID: 29974678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.
    Mayer AK; Rohrschneider K; Strom TM; Glöckle N; Kohl S; Wissinger B; Weisschuh N
    Eur J Hum Genet; 2016 Mar; 24(3):459-62. PubMed ID: 26153215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts.
    Mochida GH; Ganesh VS; Felie JM; Gleason D; Hill RS; Clapham KR; Rakiec D; Tan WH; Akawi N; Al-Saffar M; Partlow JN; Tinschert S; Barkovich AJ; Ali B; Al-Gazali L; Walsh CA
    Am J Hum Genet; 2010 Dec; 87(6):882-9. PubMed ID: 21109224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intronic position +9 and -9 are potentially splicing sites boundary from intronic variants analysis of whole exome sequencing data.
    Zhang L; Shen M; Shu X; Zhou J; Ding J; Zhong C; Pan B; Wang B; Zhang C; Guo W
    BMC Med Genomics; 2023 Jun; 16(1):146. PubMed ID: 37365551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming the challenges associated with identification of deep intronic variants by whole genome sequencing.
    Dirix M; Gribouval O; Arrondel C; Benjelloun S; Boyer O; Charbit M; Antignac C; Heidet L; Dorval G
    Clin Genet; 2023 Jun; 103(6):693-698. PubMed ID: 36705481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mRNA analysis identifies deep intronic variants causing Alport syndrome and overcomes the problem of negative results of exome sequencing.
    Wang X; Zhang Y; Ding J; Wang F
    Sci Rep; 2021 Sep; 11(1):18097. PubMed ID: 34508137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel splice variant in EMC1 is associated with cerebellar atrophy, visual impairment, psychomotor retardation with epilepsy.
    Geetha TS; Lingappa L; Jain AR; Govindan H; Mandloi N; Murugan S; Gupta R; Vedam R
    Mol Genet Genomic Med; 2018 Mar; 6(2):282-287. PubMed ID: 29271071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel deep intronic mutation in the coagulation factor XIII a chain gene leading to unexpected RNA splicing in a patient with factor XIII deficiency.
    Deng J; Li D; Mei H; Tang L; Wang HF; Hu Y
    BMC Med Genet; 2020 Jan; 21(1):9. PubMed ID: 31914974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Characteristics of
    Weisschuh N; Mazzola P; Bertrand M; Haack TB; Wissinger B; Kohl S; Stingl K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Synonymous Pathogenic Variants in Monogenic Disorders by Integrating Exome with Transcriptome Sequencing.
    Zhang L; Lou H; Huang Y; Dong L; Gong X; Zhang X; Bao W; Xiao R
    J Mol Diagn; 2024 Apr; 26(4):267-277. PubMed ID: 38280421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
    Schottlaender LV; Abeti R; Jaunmuktane Z; Macmillan C; Chelban V; O'Callaghan B; McKinley J; Maroofian R; Efthymiou S; Athanasiou-Fragkouli A; Forbes R; Soutar MPM; Livingston JH; Kalmar B; Swayne O; Hotton G; ; Pittman A; Mendes de Oliveira JR; de Grandis M; Richard-Loendt A; Launchbury F; Althonayan J; McDonnell G; Carr A; Khan S; Beetz C; Bisgin A; Tug Bozdogan S; Begtrup A; Torti E; Greensmith L; Giunti P; Morrison PJ; Brandner S; Aurrand-Lions M; Houlden H
    Am J Hum Genet; 2020 Mar; 106(3):412-421. PubMed ID: 32142645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification.
    Cen Z; Chen Y; Chen S; Wang H; Yang D; Zhang H; Wu H; Wang L; Tang S; Ye J; Shen J; Wang H; Fu F; Chen X; Xie F; Liu P; Xu X; Cao J; Cai P; Pan Q; Li J; Yang W; Shan PF; Li Y; Liu JY; Zhang B; Luo W
    Brain; 2020 Feb; 143(2):491-502. PubMed ID: 31851307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of a RNA splice variant in TULP1 in two siblings with early-onset photoreceptor dystrophy.
    Verbakel SK; Fadaie Z; Klevering BJ; van Genderen MM; Feenstra I; Cremers FPM; Hoyng CB; Roosing S
    Mol Genet Genomic Med; 2019 Jun; 7(6):e660. PubMed ID: 30950243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.