These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 3415994)

  • 21. Anion-exchange and glucose transport proteins: structure, function, and distribution.
    Lodish HF
    Harvey Lect; 1986-1987; 82():19-46. PubMed ID: 3329165
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetics and mechanism of anion transport in red blood cells.
    Jennings ML
    Annu Rev Physiol; 1985; 47():519-33. PubMed ID: 3922288
    [No Abstract]   [Full Text] [Related]  

  • 23. Denaturation of a membrane transport protein by urea: the erythrocyte anion exchanger.
    Fröhlich O; Jones SC
    J Membr Biol; 1987; 98(1):33-42. PubMed ID: 3669064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anion transport in red blood cells and arginine-specific reagents. The location of [14C]phenylglyoxal binding sites in the anion transport protein in the membrane of human red cells.
    Zaki L
    FEBS Lett; 1984 Apr; 169(2):234-40. PubMed ID: 6714427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monocarboxylate transport in red blood cells: kinetics and chemical modification.
    Deuticke B
    Methods Enzymol; 1989; 173():300-29. PubMed ID: 2674614
    [No Abstract]   [Full Text] [Related]  

  • 26. Relation between red cell anion exchange and urea transport.
    Toon MR; Solomon AK
    Biochim Biophys Acta; 1985 Dec; 821(3):502-4. PubMed ID: 3841011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model for the action of the anion exchange protein of the red blood cell.
    Rothstein A; Knauf PA; Grinstein S; Shami Y
    Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Malonate transport in human red blood cells.
    Hajjawi OS; Hider RC
    Mol Cell Biochem; 1987 May; 75(1):43-9. PubMed ID: 3627105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study.
    Falke JJ; Chan SI
    J Biol Chem; 1985 Aug; 260(17):9537-44. PubMed ID: 4019484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate-dependent reversal of anion transport site orientation in the human red blood cell anion-exchange protein, AE1.
    Knauf PA; Law FY; Leung TW; Gehret AU; Perez ML
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10861-4. PubMed ID: 12149479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO
    Hsu K; Lee TY; Periasamy A; Kao FJ; Li LT; Lin CY; Lin HJ; Lin M
    FASEB J; 2017 Oct; 31(10):4256-4264. PubMed ID: 28596233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separative pathways for urea and water, and for chloride in chicken erythrocytes.
    Brahm J; Wieth JO
    J Physiol; 1977 Apr; 266(3):727-49. PubMed ID: 17003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method to distinguish between pore and carrier kinetics applied to urea transport across the erythrocyte membrane.
    Yousef LW; Macey RI
    Biochim Biophys Acta; 1989 Sep; 984(3):281-8. PubMed ID: 2775778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis.
    Price WS; Kuchel PW
    NMR Biomed; 1990 Apr; 3(2):59-63. PubMed ID: 2390454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell.
    Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A
    Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites.
    Wieth JO; Andersen OS; Brahm J; Bjerrum PJ; Borders CL
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):383-99. PubMed ID: 6130537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of red cell urea flux by anion exchange inhibitors.
    Toon MR; Solomon AK
    Biochim Biophys Acta; 1994 Aug; 1193(2):276-86. PubMed ID: 7519880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS).
    Poole RC; Cranmer SL; Holdup DW; Halestrap AP
    Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of glucose transport using human erythrocyte band 3.
    Shelton RL; Langdon RG
    Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inhibitory effect of anthranilate derivatives on HCO3-/Cl- exchange in red blood cells of human, pigeon and trout.
    Romano L; Mandolfino M; Trischitta F; Scuteri A
    Cell Biol Int Rep; 1992 Jun; 16(6):575-83. PubMed ID: 1394459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.