These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34160057)

  • 21. Ovalbumin fibril-stabilized oleogel-based Pickering emulsions improve astaxanthin bioaccessibility.
    Wang Z; Gao Y; Wei Z; Xue C
    Food Res Int; 2022 Nov; 161():111790. PubMed ID: 36192880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators.
    Wang S; Qin Y; Liu Y; Liu G; Cheng G; Soteyome T
    Food Res Int; 2024 Jun; 186():114350. PubMed ID: 38729698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents.
    Espert M; Hernández MJ; Sanz T; Salvador A
    Curr Res Food Sci; 2022; 5():564-570. PubMed ID: 35340999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polysaccharide-based oleogels prepared with an emulsion-templated approach.
    Patel AR; Cludts N; Bin Sintang MD; Lewille B; Lesaffer A; Dewettinck K
    Chemphyschem; 2014 Nov; 15(16):3435-9. PubMed ID: 25123287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax.
    Hwang HS; Winkler-Moser JK
    J Food Sci; 2020 Oct; 85(10):3293-3302. PubMed ID: 32935874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical compatibility between wax esters and triglycerides in hybrid shortenings and margarines prepared in rice bran oil.
    Doan CD; Tavernier I; Danthine S; Rimaux T; Dewettinck K
    J Sci Food Agric; 2018 Feb; 98(3):1042-1051. PubMed ID: 28718922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural Gums as Oleogelators.
    Banaś K; Harasym J
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties.
    Oh I; Lee J; Lee HG; Lee S
    Food Res Int; 2019 Aug; 122():566-572. PubMed ID: 31229115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions.
    Pan J; Tang L; Dong Q; Li Y; Zhang H
    Food Res Int; 2021 Feb; 140():110057. PubMed ID: 33648281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent developments of oleogel utilizations in bakery products.
    Demirkesen I; Mert B
    Crit Rev Food Sci Nutr; 2020; 60(14):2460-2479. PubMed ID: 31385718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of fat types and myofibrillar protein on the rheological properties and thermal stability of meat emulsion systems.
    Kim TK; Hyeock Lee M; In Yong H; Won Jang H; Jung S; Choi YS
    Food Chem; 2021 Jun; 346():128930. PubMed ID: 33460962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial crystallized oleogel emulsion with improved freeze-thaw stability and tribological properties: Influence of cooling rate.
    Liao Z; Wang X; Lu M; Zhong R; Xiao J; Rogers MA; Cao Y; Lan Y
    Food Chem; 2024 Jul; 445():138704. PubMed ID: 38401308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization.
    Lee MC; Tan C; Ravanfar R; Abbaspourrad A
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26433-26441. PubMed ID: 31245993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review.
    Hu X; Jiang Q; Du L; Meng Z
    Carbohydr Polym; 2023 Dec; 322():121328. PubMed ID: 37839840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions.
    Patel AR; Schatteman D; De Vos WH; Lesaffer A; Dewettinck K
    J Colloid Interface Sci; 2013 Dec; 411():114-21. PubMed ID: 24050637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties.
    Callau M; Sow-Kébé K; Nicolas-Morgantini L; Fameau AL
    J Colloid Interface Sci; 2020 Feb; 560():874-884. PubMed ID: 31711663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-based strategies for fat replacement: Approaching different protein colloidal types, structured systems and food applications.
    Vélez-Erazo EM; Okuro PK; Gallegos-Soto A; da Cunha RL; Hubinger MD
    Food Res Int; 2022 Jun; 156():111346. PubMed ID: 35650975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel.
    Patel AR; Dewettinck K
    Eur J Lipid Sci Technol; 2015 Nov; 117(11):1772-1781. PubMed ID: 26726293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upcycling soy processing waste (okara) into structured emulsions for fat replacement in sweet bread.
    Plazzotta S; Nicoli MC; Manzocco L
    J Sci Food Agric; 2023 Jun; 103(8):4025-4033. PubMed ID: 36440743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. O/W Pickering emulsions stabilized by Flammulina velutipes polysaccharide nanoparticles as a fat substitute: the effects of phase separation on emulsified sausage's techno-functional and sensory quality.
    Yang Y; Wang W; Wu Z; Wang X; Zhang K; Li Y
    J Sci Food Agric; 2020 Jan; 100(1):268-276. PubMed ID: 31512249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.