BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 34160268)

  • 1. Sea-Ice Bacteria
    Eronen-Rasimus E; Hultman J; Hai T; Pessi IS; Collins E; Wright S; Laine P; Viitamäki S; Lyra C; Thomas DN; Golyshin PN; Luhtanen AM; Kuosa H; Kaartokallio H
    Appl Environ Microbiol; 2021 Aug; 87(17):e0092921. PubMed ID: 34160268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential.
    Thomas T; Elain A; Bazire A; Bruzaud S
    World J Microbiol Biotechnol; 2019 Mar; 35(3):50. PubMed ID: 30852675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships.
    Cai L; Tan D; Aibaidula G; Dong XR; Chen JC; Tian WD; Chen GQ
    Microb Cell Fact; 2011 Nov; 10():88. PubMed ID: 22040376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters.
    Pärnänen K; Karkman A; Virta M; Eronen-Rasimus E; Kaartokallio H
    Extremophiles; 2015 Jan; 19(1):197-206. PubMed ID: 25280551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania).
    Cristea A; Baricz A; Leopold N; Floare CG; Borodi G; Kacso I; Tripon S; Bulzu PA; Andrei AȘ; Cadar O; Levei EA; Banciu HL
    J Appl Microbiol; 2018 Nov; 125(5):1343-1357. PubMed ID: 29928771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments.
    Kaye JZ; Márquez MC; Ventosa A; Baross JA
    Int J Syst Evol Microbiol; 2004 Mar; 54(Pt 2):499-511. PubMed ID: 15023967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1.
    Sawant SS; Salunke BK; Kim BS
    Bioresour Technol; 2015 Oct; 194():247-55. PubMed ID: 26207871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHA Production and PHA Synthases of the Halophilic Bacterium
    Thomas T; Sudesh K; Bazire A; Elain A; Tan HT; Lim H; Bruzaud S
    Bioengineering (Basel); 2020 Mar; 7(1):. PubMed ID: 32244900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].
    Yu Y; Li HR; Chen B; Zeng YX; He JF
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):184-90. PubMed ID: 16736573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99.
    Christensen M; Chiciudean I; Jablonski P; Tanase AM; Shapaval V; Hansen H
    PLoS One; 2023; 18(3):e0282623. PubMed ID: 36888636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico.
    Martínez-Gutiérrez CA; Latisnere-Barragán H; García-Maldonado JQ; López-Cortés A
    PeerJ; 2018; 6():e4780. PubMed ID: 29761063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp.
    Simon-Colin C; Raguénès G; Cozien J; Guezennec JG
    J Appl Microbiol; 2008 May; 104(5):1425-32. PubMed ID: 18179545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9.
    Liu Y; Zhao W; Wang S; Huo K; Chen Y; Guo H; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Dec; 223(Pt A):240-251. PubMed ID: 36347367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced polyhydroxyalkanoates accumulation by Halomonas spp. in artificial biofilms of alginate beads.
    Berlanga M; Miñana-Galbis D; Domènech O; Guerrero R
    Int Microbiol; 2012 Dec; 15(4):191-9. PubMed ID: 23844478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects.
    Quillaguamán J; Guzmán H; Van-Thuoc D; Hatti-Kaul R
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1687-96. PubMed ID: 20024541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats.
    Rathi DN; Amir HG; Abed RM; Kosugi A; Arai T; Sulaiman O; Hashim R; Sudesh K
    J Appl Microbiol; 2013 Feb; 114(2):384-95. PubMed ID: 23176757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi.
    Tao W; Lv L; Chen GQ
    Microb Cell Fact; 2017 Apr; 16(1):48. PubMed ID: 28381263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polyhydroxyalkanoates production from wheat straw by recombinant Halomonas elongata A1.
    Liu C; Wang X; Yang H; Liu C; Zhang Z; Chen G
    Int J Biol Macromol; 2021 Sep; 187():675-682. PubMed ID: 34314798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes.
    Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y
    Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.