These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34160271)

  • 21. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects.
    Liao X; Lovett B; Fang W; St Leger RJ
    Microbiology (Reading); 2017 Jul; 163(7):980-991. PubMed ID: 28708056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of fungal growth and destruxin A during infection of Galleria mellonella larvae by Metarhizium brunneum.
    Ríos-Moreno A; Garrido-Jurado I; Raya-Ortega MC; Quesada-Moraga E
    J Invertebr Pathol; 2017 Oct; 149():29-35. PubMed ID: 28629882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthetic pathways of ergot alkaloids.
    Gerhards N; Neubauer L; Tudzynski P; Li SM
    Toxins (Basel); 2014 Dec; 6(12):3281-95. PubMed ID: 25513893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth.
    Sbaraini N; Hu J; Roux I; Phan CS; Motta H; Rezaee H; Schrank A; Chooi YH; Staats CC
    Fungal Genet Biol; 2021 Jul; 152():103568. PubMed ID: 33991663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversification of ergot alkaloids in natural and modified fungi.
    Robinson SL; Panaccione DG
    Toxins (Basel); 2015 Jan; 7(1):201-18. PubMed ID: 25609183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospore virulence against Culex quinquefasciatus larvae.
    Alkhaibari AM; Lord AM; Maffeis T; Bull JC; Olivares FL; Samuels RI; Butt TM
    Virulence; 2018; 9(1):1449-1467. PubMed ID: 30112970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity of Metarhizium brunneum and Beauveria bassiana against early developmental stages of the false codling moth Thaumatotibia leucotreta.
    Mondaca LL; Da-Costa N; Protasov A; Ben-Yehuda S; Peisahovich A; Mendel Z; Ment D
    J Invertebr Pathol; 2020 Feb; 170():107312. PubMed ID: 31870852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways.
    Haarmann T; Ortel I; Tudzynski P; Keller U
    Chembiochem; 2006 Apr; 7(4):645-52. PubMed ID: 16538694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Major Facilitator Superfamily Transporter Contributes to Ergot Alkaloid Accumulation but Not Secretion in
    Jones AM; Davis KA; Panaccione DG
    Appl Microbiol (Basel); 2024 Mar; 4(1):406-417. PubMed ID: 39055383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clavine Alkaloids Gene Clusters of
    Martin JF; Álvarez-Álvarez R; Liras P
    Genes (Basel); 2017 Nov; 8(12):. PubMed ID: 29186777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNM1, a Dynamin-Related Protein That Contributes to Endocytosis and Peroxisome Fission, Is Required for the Vegetative Growth, Sporulation, and Virulence of Metarhizium
    Xie X; Wang Y; Yu D; Xie R; Liu Z; Huang B
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis.
    Panaccione DG; Arnold SL
    Sci Rep; 2017 Aug; 7(1):8930. PubMed ID: 28827626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. D-lysergic acid activation and cell-free synthesis of D-lysergyl peptides in enzyme fractions from the ergot fungus Claviceps purpurea.
    Keller U; Han M; Stöffler-Meilicke M
    Biochemistry; 1988 Aug; 27(16):6164-70. PubMed ID: 2847788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction and Priming of Plant Defense by Root-Associated Insect-Pathogenic Fungi.
    Cachapa JC; Meyling NV; Burow M; Hauser TP
    J Chem Ecol; 2021 Jan; 47(1):112-122. PubMed ID: 33180275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ergot Alkaloid Synthesis Capacity of Penicillium camemberti.
    Fabian SJ; Maust MD; Panaccione DG
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30076193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte.
    Panaccione DG; Tapper BA; Lane GA; Davies E; Fraser K
    J Agric Food Chem; 2003 Oct; 51(22):6429-37. PubMed ID: 14558758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling Destruxin Synthesis by Specialist and Generalist Metarhizium Insect Pathogens during Coculture with Plants.
    Barelli L; Behie SW; Hu S; Bidochka MJ
    Appl Environ Microbiol; 2022 Jun; 88(12):e0247421. PubMed ID: 35638846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal ecology shapes disease outcomes of entomopathogenic fungi infecting warm-adapted insects.
    Slowik AR; Hesketh H; Sait SM; De Fine Licht HH
    J Invertebr Pathol; 2024 Jun; 204():108106. PubMed ID: 38621520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum.
    Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C
    PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ergot Alkaloid Biosynthesis in the Maize (Zea mays) Ergot Fungus Claviceps gigantea.
    Bragg PE; Maust MD; Panaccione DG
    J Agric Food Chem; 2017 Dec; 65(49):10703-10710. PubMed ID: 29172518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.