These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 3416032)
1. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. Loppnow GR; Mathies RA Biophys J; 1988 Jul; 54(1):35-43. PubMed ID: 3416032 [TBL] [Abstract][Full Text] [Related]
2. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196 [TBL] [Abstract][Full Text] [Related]
3. Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. Fodor SP; Gebhard R; Lugtenburg J; Bogomolni RA; Mathies RA J Biol Chem; 1989 Nov; 264(31):18280-3. PubMed ID: 2808377 [TBL] [Abstract][Full Text] [Related]
4. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. Deng H; Callender RH Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast spectroscopy of the visual pigment rhodopsin. Yan M; Manor D; Weng G; Chao H; Rothberg L; Jedju TM; Alfano RR; Callender RH Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9809-12. PubMed ID: 1946406 [TBL] [Abstract][Full Text] [Related]
6. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin. Pande C; Deng H; Rath P; Callender RH; Schwemer J Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin. Gilson HS; Honig BH; Croteau A; Zarrilli G; Nakanishi K Biophys J; 1988 Feb; 53(2):261-9. PubMed ID: 3345334 [TBL] [Abstract][Full Text] [Related]
8. Conformational homogeneity and excited-state isomerization dynamics of the bilin chromophore in phytochrome Cph1 from resonance Raman intensities. Spillane KM; Dasgupta J; Mathies RA Biophys J; 2012 Feb; 102(3):709-17. PubMed ID: 22325295 [TBL] [Abstract][Full Text] [Related]
9. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments. Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137 [TBL] [Abstract][Full Text] [Related]
10. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Pan D; Mathies RA Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage. Eyring G; Mathies R Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349 [TBL] [Abstract][Full Text] [Related]
12. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
13. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032 [TBL] [Abstract][Full Text] [Related]
14. all-trans-retinoids and dihydroretinoids as probes of the role of chromophore structure in rhodopsin activation. Calhoon RD; Rando RR Biochemistry; 1985 Nov; 24(23):6446-52. PubMed ID: 3002442 [TBL] [Abstract][Full Text] [Related]
15. The role of the beta-ionone ring in the photochemical reaction of rhodopsin. Send R; Sundholm D J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384 [TBL] [Abstract][Full Text] [Related]
16. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. Palings I; van den Berg EM; Lugtenburg J; Mathies RA Biochemistry; 1989 Feb; 28(4):1498-507. PubMed ID: 2719913 [TBL] [Abstract][Full Text] [Related]
17. Structure of the retinal chromophore in 7,9-dicis-rhodopsin. Loppnow GR; Miley ME; Mathies RA; Liu RS; Kandori H; Shichida Y; Fukada Y; Yoshizawa T Biochemistry; 1990 Sep; 29(38):8985-91. PubMed ID: 2271572 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635 [TBL] [Abstract][Full Text] [Related]
19. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin. Pande AJ; Callender RH; Ebrey TG; Tsuda M Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069 [TBL] [Abstract][Full Text] [Related]
20. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]