These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3416036)

  • 1. Frequency-domain measurements of the rotational dynamics of the tyrosine groups of calmodulin.
    Gryczynski I; Lakowicz JR; Steiner RF
    Biophys Chem; 1988 May; 30(1):49-59. PubMed ID: 3416036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biochemistry; 1987 Jan; 26(1):82-90. PubMed ID: 3828310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity and anisotropy decays of the tyrosine calmodulin proteolytic fragments, as studied by GHz frequency-domain fluorescence.
    Gryczynski I; Steiner RF; Lakowicz JR
    Biophys Chem; 1991 Jan; 39(1):69-78. PubMed ID: 2012835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biophys Chem; 1986 Jul; 24(2):97-100. PubMed ID: 3756310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity and anisotropy decays of [Leu5] enkephalin tyrosyl fluorescence by 10 GHz frequency-domain fluorometry.
    Lakowicz JR; Gryczynski I; Laczko G; Wiczk W
    Biophys Chem; 1993 Jul; 47(1):33-40. PubMed ID: 8364147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I; Cherek H
    J Biol Chem; 1986 Feb; 261(5):2240-5. PubMed ID: 3944133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and performance of a variable-frequency phase-modulation fluorometer.
    Lakowicz JR; Maliwal BP
    Biophys Chem; 1985 Jan; 21(1):61-78. PubMed ID: 3971026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity and anisotropy decays of the Wye base of yeast tRNA(Phe) as measured by frequency-domain fluorometry.
    Wells BD; Lakowicz JR
    Biophys Chem; 1987 Apr; 26(1):39-43. PubMed ID: 3647800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parallel multiharmonic frequency-domain fluorometer for measuring excited-state decay kinetics following one-, two-, or three-photon excitation.
    Watkins AN; Ingersoll CM; Baker GA; Bright FV
    Anal Chem; 1998 Aug; 70(16):3384-96. PubMed ID: 9726164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-Resolved Fluorescence Intensity and Anisotropy Decays of 2,5-Diphenyloxazole by Two-Photon Excitation and Frequency-Domain Fluorometry.
    Lakowicz JR; Gryczynski I; Gryczynski Z; Danielsen E; Wirth MJ
    J Phys Chem; 1992 Apr; 96(7):3000-3006. PubMed ID: 31849371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence.
    Eads TM; Thomas DD; Austin RH
    J Mol Biol; 1984 Oct; 179(1):55-81. PubMed ID: 6209402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectral properties of the anticancer drug topotecan by steady-state and frequency domain fluorometry with one-photon and multi-photon excitation.
    Gryczynski I; Gryczynski Z; Lakowicz JR; Yang D; Burke TG
    Photochem Photobiol; 1999 Apr; 69(4):421-8. PubMed ID: 10212575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: internal motions of N-methylanthraniloyl melittin.
    Maliwal BP; Hermetter A; Lakowicz JR
    Biochim Biophys Acta; 1986 Sep; 873(2):173-81. PubMed ID: 3756174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational modes of Ca2+-liganded calmodulin, as determined by time-domain fluorescence.
    Steiner RF; Norris L
    Biophys Chem; 1987 Jul; 27(1):27-38. PubMed ID: 3607237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
    Tjandra N; Kuboniwa H; Ren H; Bax A
    Eur J Biochem; 1995 Jun; 230(3):1014-24. PubMed ID: 7601131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.
    VanScyoc WS; Sorensen BR; Rusinova E; Laws WR; Ross JB; Shea MA
    Biophys J; 2002 Nov; 83(5):2767-80. PubMed ID: 12414709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of structural changes associated with calcium activation of calmodulin using frequency domain fluorescence spectroscopy.
    Yao Y; Schöneich C; Squier TC
    Biochemistry; 1994 Jun; 33(25):7797-810. PubMed ID: 8011644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: a stimulation study.
    Maliwal BP; Lakowicz JR
    Biochim Biophys Acta; 1986 Sep; 873(2):161-72. PubMed ID: 3756173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.