BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34160805)

  • 1. In Vitro Silencing of lncRNAs Using LNA GapmeRs.
    Taiana E; Favasuli V; Ronchetti D; Morelli E; Tassone P; Viglietto G; Munshi NC; Neri A; Amodio N
    Methods Mol Biol; 2021; 2348():157-166. PubMed ID: 34160805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockdown of Nuclear lncRNAs by Locked Nucleic Acid (LNA) Gapmers in Nephron Progenitor Cells.
    Nishikawa M; Yanagawa N
    Methods Mol Biol; 2020; 2161():29-36. PubMed ID: 32681503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tips for Successful lncRNA Knockdown Using Gapmers.
    Lennox KA; Behlke MA
    Methods Mol Biol; 2020; 2176():121-140. PubMed ID: 32865787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of Long Noncoding RNA Plasmacytoma Variant Translocation 1 with Antisense Locked Nucleic Acid GapmeRs Exerts Tumor-Suppressive Functions in Human Acute Erythroleukemia Cells Through Downregulation of
    Salehi M; Sharifi M; Bagheri M
    Cancer Biother Radiopharm; 2019 Aug; 34(6):371-379. PubMed ID: 30141968
    [No Abstract]   [Full Text] [Related]  

  • 6. Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection.
    Alfeghaly C; Aigueperse C; Maenner S; Behm-Ansmant I
    Methods Mol Biol; 2021; 2300():31-37. PubMed ID: 33792869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro.
    Iwashita S; Shoji T; Koizumi M
    Methods Mol Biol; 2020; 2176():155-161. PubMed ID: 32865789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs.
    Roux BT; Lindsay MA; Heward JA
    Methods Mol Biol; 2017; 1468():11-8. PubMed ID: 27662866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Investigation into the Potential of Targeting
    Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells.
    Rapozzi V; Cogoi S; Xodo LE
    Mol Cancer Ther; 2006 Jul; 5(7):1683-92. PubMed ID: 16891454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer.
    Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F
    Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA.
    Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.
    Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A
    Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.
    Lennox KA; Behlke MA
    Nucleic Acids Res; 2016 Jan; 44(2):863-77. PubMed ID: 26578588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.
    Stein CA; Hansen JB; Lai J; Wu S; Voskresenskiy A; Høg A; Worm J; Hedtjärn M; Souleimanian N; Miller P; Soifer HS; Castanotto D; Benimetskaya L; Ørum H; Koch T
    Nucleic Acids Res; 2010 Jan; 38(1):e3. PubMed ID: 19854938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods Used to Make Lipid Nanoparticles to Deliver LNA Gapmers Against lncRNAs into Acute Myeloid Leukemia (AML) Blasts.
    Kuo CT; Lee RJ; Garzon R
    Methods Mol Biol; 2021; 2348():167-174. PubMed ID: 34160806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity.
    Cai Y; Makarova AM; Wengel J; Howard KA
    J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity.
    Amodio N; Stamato MA; Juli G; Morelli E; Fulciniti M; Manzoni M; Taiana E; Agnelli L; Cantafio MEG; Romeo E; Raimondi L; Caracciolo D; Zuccalà V; Rossi M; Neri A; Munshi NC; Tagliaferri P; Tassone P
    Leukemia; 2018 Sep; 32(9):1948-1957. PubMed ID: 29487387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides.
    Kasuya T; Kugimiya A
    Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Administration of Therapeutic Antisense Oligonucleotides.
    Statello L; Ali MM; Kanduri C
    Methods Mol Biol; 2021; 2254():273-282. PubMed ID: 33326082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.