These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34160805)
1. In Vitro Silencing of lncRNAs Using LNA GapmeRs. Taiana E; Favasuli V; Ronchetti D; Morelli E; Tassone P; Viglietto G; Munshi NC; Neri A; Amodio N Methods Mol Biol; 2021; 2348():157-166. PubMed ID: 34160805 [TBL] [Abstract][Full Text] [Related]
2. Knockdown of Nuclear lncRNAs by Locked Nucleic Acid (LNA) Gapmers in Nephron Progenitor Cells. Nishikawa M; Yanagawa N Methods Mol Biol; 2020; 2161():29-36. PubMed ID: 32681503 [TBL] [Abstract][Full Text] [Related]
3. Tips for Successful lncRNA Knockdown Using Gapmers. Lennox KA; Behlke MA Methods Mol Biol; 2020; 2176():121-140. PubMed ID: 32865787 [TBL] [Abstract][Full Text] [Related]
4. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers. Maruyama R; Yokota T Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781 [TBL] [Abstract][Full Text] [Related]
5. Knockdown of Long Noncoding RNA Plasmacytoma Variant Translocation 1 with Antisense Locked Nucleic Acid GapmeRs Exerts Tumor-Suppressive Functions in Human Acute Erythroleukemia Cells Through Downregulation of Salehi M; Sharifi M; Bagheri M Cancer Biother Radiopharm; 2019 Aug; 34(6):371-379. PubMed ID: 30141968 [No Abstract] [Full Text] [Related]
7. Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro. Iwashita S; Shoji T; Koizumi M Methods Mol Biol; 2020; 2176():155-161. PubMed ID: 32865789 [TBL] [Abstract][Full Text] [Related]
8. Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs. Roux BT; Lindsay MA; Heward JA Methods Mol Biol; 2017; 1468():11-8. PubMed ID: 27662866 [TBL] [Abstract][Full Text] [Related]
9. An Investigation into the Potential of Targeting Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016 [TBL] [Abstract][Full Text] [Related]
10. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells. Rapozzi V; Cogoi S; Xodo LE Mol Cancer Ther; 2006 Jul; 5(7):1683-92. PubMed ID: 16891454 [TBL] [Abstract][Full Text] [Related]
11. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer. Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119 [TBL] [Abstract][Full Text] [Related]
12. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. Grünweller A; Wyszko E; Bieber B; Jahnel R; Erdmann VA; Kurreck J Nucleic Acids Res; 2003 Jun; 31(12):3185-93. PubMed ID: 12799446 [TBL] [Abstract][Full Text] [Related]
13. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380 [TBL] [Abstract][Full Text] [Related]
14. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Lennox KA; Behlke MA Nucleic Acids Res; 2016 Jan; 44(2):863-77. PubMed ID: 26578588 [TBL] [Abstract][Full Text] [Related]
15. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Stein CA; Hansen JB; Lai J; Wu S; Voskresenskiy A; Høg A; Worm J; Hedtjärn M; Souleimanian N; Miller P; Soifer HS; Castanotto D; Benimetskaya L; Ørum H; Koch T Nucleic Acids Res; 2010 Jan; 38(1):e3. PubMed ID: 19854938 [TBL] [Abstract][Full Text] [Related]
16. Methods Used to Make Lipid Nanoparticles to Deliver LNA Gapmers Against lncRNAs into Acute Myeloid Leukemia (AML) Blasts. Kuo CT; Lee RJ; Garzon R Methods Mol Biol; 2021; 2348():167-174. PubMed ID: 34160806 [TBL] [Abstract][Full Text] [Related]
17. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity. Cai Y; Makarova AM; Wengel J; Howard KA J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498 [TBL] [Abstract][Full Text] [Related]
18. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Amodio N; Stamato MA; Juli G; Morelli E; Fulciniti M; Manzoni M; Taiana E; Agnelli L; Cantafio MEG; Romeo E; Raimondi L; Caracciolo D; Zuccalà V; Rossi M; Neri A; Munshi NC; Tagliaferri P; Tassone P Leukemia; 2018 Sep; 32(9):1948-1957. PubMed ID: 29487387 [TBL] [Abstract][Full Text] [Related]
19. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides. Kasuya T; Kugimiya A Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329 [TBL] [Abstract][Full Text] [Related]
20. In Vivo Administration of Therapeutic Antisense Oligonucleotides. Statello L; Ali MM; Kanduri C Methods Mol Biol; 2021; 2254():273-282. PubMed ID: 33326082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]